Exotic hadrons from a quark-model's point of view

Sachiko Takeuchi (Japan College of Social Work)

in collaboration with

- K. Shimizu (Sophia)
- V.E. Lyubovitskij, Th. Gutsche, Amand Faessler (Institut für Theoretishe Physik, Univ Tübingen)

Exotic hadrons Exotic hadrons v.s. baryons & mesons \mathbf{Q}^3 ←→ Baryons $q^{4}\overline{q}$ (1405) n cloud + more...? Exotic hadrons $q\bar{q} \leftrightarrow Mesons$ q²q²X(3872) ms + more...?

Λ(1405)

mass spectrum of q³ baryons

Λ(1405)

- Flavor-singlet P-wave q³ state ?
 - Observed $\Lambda_8 \Lambda_1$ splitting
 - Observed large LS splitting
 are difficult to reproduce...
- S-wave q⁴q state ?

• CMI $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ can be strongly attractive in 2 states of T=0 J^P=1/2⁻⁻⁻

- but also in T=1 $1/2^{-1}$

Problems in Λ(1405) From a quark model's viewpoint

mass diff.	config.	origin	Theo.	Exp.	
Ma - Mn	q ³	$(\sigma \cdot \sigma)$	300 MeV	300 MeV	
M^8 - M^1	d3	$(\sigma \cdot \sigma)$	150 MeV	200 14-14	
	(q ⁴ q̄)	flavor sym.	Larger	200 iviev	
MN(3/2-) - MN(1/2-)	q ³	(LS)	0 MeV	0 MeV	
M^(1520) - M^(1405)	q ³	(LS)	0 MeV	115MeV	
	(q ⁴ q̄)	$(\sigma \cdot \sigma)$	Larger		

Λ(1405)

- Flavor-singlet P-wave q³ state ?
 - Observed $\Lambda_8 \Lambda_1$ splitting
 - Observed large LS splitting
 are difficult to reproduce...
- S-wave q⁴q state ?

• CMI $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ can be strongly attractive in 2 states of T=0 J^P=1/2⁻⁻⁻

- but also in T=1 $1/2^{-1}$

Baryon-meson scattering (QCM)

- From Schrödinger eq for quarks: $(H_q - E)\phi = 0$
- Assuming wave function as $\Psi = \phi_B \phi_M \chi$
- By integrating the internal modes out we get RGM eq (using real meson mass) (H - E N) $\chi = 0$
- 3-channel coupled QCM scattering calc.
 for m_u≠m_s

No peak is found for q⁴q !!

- Reduced mass of $\Sigma \pi$ is small \rightarrow Kinetic term is large \rightarrow Short range attraction is suppressed.
- No attraction in the NK channel.

With q³-pole ···

• $\Lambda(1405) = |q^3\rangle + |q^4\bar{q}\rangle$ (Very rough Transition pot. $\langle q^3 | V | q^4\bar{q} \rangle$: estimate) $V = |\Lambda_1 q^3 (0s)^2 0p \rangle \langle BM q^4\bar{q} (0s)^5 |$ $\times \langle \downarrow \downarrow \downarrow \downarrow \rangle^{\lambda \gamma_{\mu}} \rangle$

pair-annihilating diagram \downarrow use smaller $\alpha_{\rm S}$:×½ –

Λ ₁ 1/2-	Σ ₈ 1/2-			
Σπ -178.1	$\wedge \pi$	47.6		
NK 117.1	Σπ	61.4		
Λ <i>η</i> 57.5	NK	-85.0		
(in MeV)	Ση	-43.4		

Coupling to q³

• (0s)⁵+(0s)²0p

- The mixing is larger in $\Lambda 1/2$ -.
- Width \sim 100 MeV.
- Λ may be seen;
 while Σ does not
 give a peak ???

q³-qq scattering with q³-pole

• q³-pole at $\Sigma \pi$ + 130MeV (~1460 MeV) gives a resonance at 1400MeV!

wave functions at resonance

• Can this be observed...?

Σ* (flavor octet)

- No peak is found around 1400MeV.
 - [•] mixing between $q^4\overline{q}$ and q^3 is small.
 - The mass of the q³-pole is heavy.

Summary of parity -1 baryons

- $\Lambda(1405)$ and Σ^* are investigated as a $(q^3-q\bar{q})+q^3$ pole system.
 - Only A(1/2-) has a resonance around 1400MeV.
 - The peak in Σ(1/2-) is found at the higher energy.
 - $\Lambda(3/2-)$ is not calculated dynamically. But $\Sigma^*\pi$ has smaller attraction than $\Lambda(1/2-)$.
- But what is a multiquark component rather than the baryon-meson?

X(3872)

- X(3872) found in $B^{\pm} \rightarrow K^{\pm}X$
 - M(X) = 3871.7±0.6 MeV
 - Γ < 2.3 MeV</p>
- Threshold
 - J/ψ ω= 3879.5MeV
 - D[±]D^{*∓} = 3879.1MeV
 - J/ψρ= 3872.7MeV
 - D⁰D*0 = 3871.3MeV

X(3872)

- X(3872) found in $B^{\pm} \rightarrow K^{\pm}X$
 - M(X) = 3871.7±0.6 MeV
 - **Г** < 2.3 MeV
- Threshold
 - $J/\psi \omega = 3879.5 MeV$
 - D[±]D^{*∓} = 3879.1MeV
 - $J/\psi \rho = 3872.7 \text{MeV}$ • $D^0 D^{*0} = 3871.3 \text{MeV}$

X(3872)

- X(3872) found in $B^{\pm} \rightarrow K^{\pm}X$
 - M(X) = 3871.7±0.6 MeV
 - Γ < 2.3 MeV</p>
- Threshold
 - J/ψ ω= 3879.5MeV
 - D[±]D^{*∓} = 3879.1MeV
 - J/ψρ= 3872.7MeV
 - D⁰D*0 = 3871.3MeV

$$\begin{array}{c} & D_{s}^{\pm}D_{s}^{\mp} & 64.7 \text{MeV} \\ & D^{\pm}D^{\mp}* & J/\psi \ \omega & 8 \text{MeV} \\ & X & D^{*0}\overline{D}^{0} & J/\psi \ \rho \\ & & D\overline{D} & -138 \text{MeV} \end{array}$$

X(3872): CC or not CC?

- X(3872) peak was found in π⁺π⁻ J/ψ channel (Belle PRL91(2003)262001)
- narrow width < 2.3 MeV. (Not decay to DD)
 - Not $c\bar{c}$? $\pi\pi$ mass spectrum suggests that the peak is not a simple $c\bar{c}$ state. (See, e.g. G.Bauer Int J Mod Phys A)
 - ccg ? (Seth 05; Li 05)
 - D⁰D*⁰ meson? (Swanson 04; Tornqvist 04)
 - qācc ? (Maiani 05)

X(3872): CC or not CC?

- X(3872) peak was found in π⁺π⁻ J/ψ channel (Belle PRL91(2003)262001)
- narrow width < 2.3 MeV. (Not decay to DD)
 - Not $c\bar{c}$? $\pi\pi$ mass spectrum suggests that the peak is not a simple $c\bar{c}$ state. (See, e.g. G.Bauer Int J Mod Phys A)
 - ccg ? (Seth 05; Li 05)
 - D⁰D*⁰ meson? (Swanson 04; Tornqvist 04)
 - qācc ? (Maiani 05)

Hamiltonian for quarks

H = Nonrela Kin + linear Conf + OGE + lns + π, σ exch OGF

Hamiltonian for quarks

Ins (affects only light quark pairs.)

Estimate by (Os)⁴

• Effects of the interaction on $q\bar{q}$ pairs Rough sizes are obtained from N Δ , and $\eta' - \eta$ mass differences.

Color	Spin	Flavor	CMI	OgE-a	Ins	E[MeV]	State
1	0	1	-16	0	12	84	η
1	0	8	-16	0	-6	-327	π
1	1]	16/3	0	0	63	ω
٦	1	8	16/3	0	0	63	Q
8	0	1	2	0	3/4	41	
8	0	8	2	0	-3/8	15	
8	1	1	-2/3	9/2	9/4	97	
8	1	8	-2/3	0	-9/8	-34	In J ^{PC} = 0 ⁺⁺ , 1 ⁺⁻ ,1 ⁺⁺ , 2 ⁺⁺

Realistic Calc. - qqcc

Stochastic variational approach

$$\Psi = \sum c_{k,m} \,\psi_m^c \psi^f \psi^\sigma \psi_k^{orb}$$

 $\psi_m^c = \psi^c(1)\psi^c(2)\psi^c(3)\psi^c(4), \quad \psi^c(1)\lambda^a\psi^c(2)\psi^c(3)\lambda^a\psi^c(4)$

$$\psi^{f} = u(1)c(2)\overline{d}(3)\overline{c}(4), \quad \frac{1}{\sqrt{2}} \{u(1)\overline{u}(3) + d(1)\overline{d}(3)\}c(2)\overline{c}(4)$$

$$\psi_k^{orb} = \exp[-\sum_{i < j} \beta_{ij}^{(k)} r_{ij}^2]$$

$$\psi^{\sigma} = |(11)\rangle (J/\psi \& \rho)$$

Realistic Calc. - qqcc

Binding Energy

IJPC	weaker meson-exch	stronger meson-exch
ll++ (J/ψρ)	5 MeV	26 MeV
01++ (J/ $\psi \omega$)	Not Bound	5 MeV

Molecule AND diquarks ?										
 Components and size 										
		N	rms	R_{M_1}	R_{M_2}	$R_{M_{12}}$	$\langle V_{\rm CMI} \rangle$	$\langle V_{\rm OgE}^{(a)} \rangle$	$\langle V_{\rm Ins}$	$+V_{\rm Ins}^{(a)}\rangle$
1/2/2 - 0 (1++)	$(J/\psi\rho)_{11}$	0.52	2.17	0.97	0.64	2.01	33	0		0
$D = E \left[\frac{1}{\sqrt{2}} \right]$	$(J/\psi\rho)_{88}$	0.48	1.42	1.43	1.24	0.48	-33	0		-5
DE=3. Hviev										
								(c.f.	
								1	mesor	n size
									ρ	0.89
								[D D*	0.65
									J∕ψ	0.73
								Jan 9, 2	2007	@RCNP

Molecule AND diquarks ? Components and size $\langle V_{\rm OgE}^{(a)} \rangle$ $\langle V_{\rm Ins} + V_{\rm Ins}^{(a)} \rangle$ $R_{M_2} R_{M_{12}}$ $\langle V_{\rm CMI} \rangle$ N R_{M_1} rms $0.52 \ 2.17 \ 0.97 \ 0.64$ J/ ψ - ρ (1++) $\frac{(J/\psi\rho)_{11}}{(J/\psi\rho)_{88}}$ BE=5.1MeV $\frac{(J/\psi\rho)_{88}}{(DD^*)}$ 2.01 33 $\left(\right)$ -33 0.48 $1.42 \ 1.43 \ 1.24$ 0.48 $\left(\right)$ -5 $\overline{DD^{*}}_{11}$ 0.65 1.48 0.91 1.16 $\left(\right)$ -41 $DD^{*})_{88}$ $0.35 \ 2.39$ 2.330.5221 $\left(\right)$ -1

c.f. meson size ρ 0.89 D 0.65 D* 0.73

 J/ψ 0.51

Density distri & rms $\sqrt{\langle \delta(R_{mm'}-X) r_{ij}^2 \rangle}$ • $<\delta(R_{mm'}-X)>$ Rms of mesons Density distribution 1.0 -- ρ -- J/ψ - J/ ψ - ρ color-singlet – D-D* color-singlet - D and D* rms (R) ρ (R) -- J/ ψ - ρ color-octet ρ \cdots D-D* color-octet * 0.5 (free) 0.0 0 2 2 3 3 0

R [fm]

Jan 9, 2007 @RCNP

R [fm]

Jan 9, 2007 @RCNP

Effects of multiquark components

 When only correlations between uū & cc
 or uc
 & cu
 are included, what happens?

No correlations among more than 3quarks \rightarrow two-meson-like configuration

Effects of multiquark components

Binding Energy

IJPC	weaker meson-exch	stronger meson-exch	J/ψρ DD*				
11++ (J/ψρ)	5 MeV	26 MeV	0.33 0.85				
O−○ config	Not Bound	9 MeV	0.26 0.89				
17 MeV difference: effects from correlations among more than 3quarks							

Summary

- Λ(1405) is investigated
 as a (q³-qq̄)+q³ pole system.
 - Only Λ(1/2-) has a resonance around 1400MeV.
- X(3872) is investigated by assuming qq
 qc
 system.
 - T=1 J^{PC}=1⁺⁺ seems to become a twomeson molecule $(J/\psi - \rho \text{ and DD}^*)$ with a sizable diquark component.

Outlook

- 'Multiquark component' may be defined as multiquark correlation in the hadrons.
- It is necessary to introduce 'Multiquark component' ?
 - not yet investigated in the negative-parity baryon resonances.
 - Sizable effect is found in the bound state X(3872).
- LEPS2 \rightarrow Baryons, light scalar mesons, reactions,...