Description of the GR forward-mode beam line: physics research by combination of magnetic spectrometers and CAGRA

A. Tamii Research Center for Nuclear Physics

GRFBL Team:

K. Miki, T. Hashimoto, K. Nagayama, Y. Matsuda, H. Fujita, C. Iwamoto, H.P. Yoshida, N. Aoi, E. Ideguchi, and A. Tamii

for CAGRA Workshop 2013.12.16-17 at Osaka Univ.

http://www.rcnp.osaka-u.ac.jp/Divisions/npl-a/GRFBL/

Under construction in this fiscal year (2013)

As a part of cyclotron improvement project.

Thanks to: director of RCNP: Prof. Nakano accelerator group: Prof. Hatanaka, Prof. Fukuda, and many.

Adds a beam-transportation mode for spectrometers GR and L

The beam can be transported to a beam dump, located 25 m downstream of the target position, with placing GR at 4.5-19.0 deg.

Realization of following experiments:

 Coincidence measurement between detectors around the target (especially γ detectors) and Grand Raiden (GR) spectrometer with placing GR at forward angles (4.5-19 deg)

The beam stop position should be sufficiently far from the detector position.

 Measurements by GR with a high-intensity beam of 10-1000nA. Due to radiation safety, the beam must be stopped in the wall beamdump.

Those measurements have been possible only for GR placed at angles larger than 25.5 deg, and for limited cases at 0 deg.

Coin. measurements of high-resolution light-ion reactions and decay y-rays

Coin. measurements of high-resolution light-ion reactions and decay y

Beam Transportation Modes GRFBL Mode

Beam Transportation Modes GRFBL Mode

Beam Transportation Modes WS_LONG Mode

Beam Transportation Modes WS_LONG Mode

Beam Transportation Modes

Table 1. Summary of the three spectrometer modes				
mode	beam stopper	Max. beam intensity	GR angle (coverage)	LAS angle (coverage)
Zero-deg inel. scatt.	0-deg beam dump	~10 nA	0 deg (0-~3 deg)	61-120 deg (58-123 deg)
Zero-deg CEX or transfer	In GR-D1	~10-100 nA	0 deg (0-~3 deg)	61-120 deg (58-123 deg)
GRFBL	wall beam dump	1000 nA	4.5-19.0 deg (3.5-20.0 deg)	61-120 deg (58-123 deg)
WS_LONG	wall beam dump	1000 nA	25.5-70.0 deg (24.5-71.0 deg)	25.5-120 deg (22.5-123 deg)

The Bp ratio: Bp The angular coverage has some limitation for reactions with Bp out of the above region.

10 12 14 16 18 20 0 Distance along Beam Axis (m) 0

0 -

4 6 8 10 12 14 16 Distance along Beam Axis (m)

Limitation of Target Thickness

GRFBL Acceptance: < 5 mr after target

Rough estimation of acceptable target thickness to have >99% transmission.

GRFBL Schedule by Sumitomo Heavy Industries (SHI) Company

year 2013	
+ Nov-Dec	production of parts, assembling of magnets
year 2014	
+ Jan-Feb	assembling and test in Niihama (SHI company)
+ Mar	construction at RCNP, adjustments, performance tests
+ Apr	adjustments, performance tests
+ May or later	beam commissioning (by RCNP)

Coin. measurements of high-resolution light-ion reactions and decay y

Coin. measurements of high-resolution light-ion reactions and decay y

From GRFBL Workshop in Nov. 2013

	T. Hashimoto	$^{12}C(\alpha, \alpha' \gamma)$		dilute cluster states, γ rare- decay	HPGe and LaBr3
	M. Tsumura	³ He(¹⁴ N, t ¹⁴ O)		nuclear synthesis	High Intensity
)	H.G. Ong, K. Miki	⁴ He, ¹² C, ¹⁶ O(p,dp), (p,dn)	Ge for proton detection	tensor correlation in nuclei	Ge for proton detection
	A. Tamii	Reactions with implanted stable/unstable target		new method	High Intensity 1pµA
	Michimasa	⁵⁰ Cr(p,t γ), (^{3,4} He, ^{6,8} He γ) astrophysics		nuclear astrophysics	HPGe 3-4 MeV
	T. Kawabata	⁴ He(p(pol),p(pol))		tensor correlation	polarized beam, high intensity
	H. Ejiri	74,72Ga,122Sn(³He,tγ)	HPGe 1% ang. correlation	study of SDR (double beta-decay)	HPGe
	I. Ou, M. Sakuda	¹⁶ Ο, ¹² C(p,p'γ)	HPGe (Nal)	GDR, SDR for neutrino detection, supernova	HPGe (or scintillator)
	Dozono	(¹⁶ O, ¹⁶ N(O-))		new probe: parity transfer	HPGe for tagging reaction channel
)	Takaki	(¹² C, ¹² Be(0+)		new probe: double charge exchange	Gamma detectors at the focal plane
	T. Itoh	32S(α,α'γ) 12C(α,αN)	HPGe	super-deformed band, dilute cluster state	HPGe

for a broad resonance state

If you measure only decay γ -rays

Discussion with T. Kawabata, T. Hashimoto

for a broad resonance state

If you measure both the excitation and deexcitaion with high-resolution

Discussion with T. Kawabata, T. Hashimoto

Excitation of high-spin states with gamma-ray tagging

Direct reaction usually doesn't favor many-particle many-hole excitations, but still it might have sizable cross section.

for ¹²C at 80 MeV/U q = 4200 MeV/c, β =0.09 at 60 deg qR = 85 h-bar (LAS spectrometer has larger acceptance)

α

Detection of large angle ion scattering (for high-q) with gamma-ray detection.

Transfer reactions can also be used.

Excitation of high-spin states with gamma-ray tagging

Y. Fujita et al., PLB247, 219(1990)

$^{12}C(^{16}O,\alpha)$ at 8.9 MeV/U, θ_{α} =5.5 deg

T. Shimoda, S. Shimoura et al., J. Phys. G 9, L199 (1983)

×0.1 10ŽĒ

6.7

KD 38

40

60

80

í 0¹

20

7.825,10

8.369,12*

40

60

80

θ_{c.m}(deg)

x0.24

20

High-spin states up to ~14-18 could be observed even without y coincidence.

 $^{208}Pb(p,p') E_{p}$ =80MeV q=64 deg

Fig. 1. Inelastic proton spectrum at $\theta_{lab} = 64^{\circ}$. The estimated error of the excitation energy is ± 8 keV.

From GRFBL Workshop in Nov. 2013

Free Discussion on Wednesday 18th Dec.

• A free discussion is scheduled for the part of GR(spectrometer)+CAGRA projects.

Place: AVF building 3rd floor lobby Time: Wednesday 18th, 9:00am - 12:00?

Meeting room on the 2nd floor is reserved for the case discussion continues in the afternoon.

- Discussions ... free (bring your items)
 - Details of planned measurements, ideas
 - Possible configuration of the gamma-ray detectors
 - Requirements from planned measurements
 - Schedule
 - Collaboration
 - etc.

Why don't you join the discussion!

(Thank you!

K400 ring cyclotron

RCNP Cyclotron Facility

Double arm spectrometer (Grand Raiden & LAS)

K140 AVF cyclotron

р: 400Ме

00Me

p ~ Xe Pol. p & d

Double Arm Spectrometer: Grand Raiden and LAS

Double Arm Spectrometer: Grand Raiden and LAS

High-Resolution Spectrometer "Grand Raiden (GR)"

Two Multi-Wire Drift Chambers Plastic Scintillators Focal Plane Polarimeter (for protons)

Large Acceptance Spectrometer (LAS)

Resolving Power:	5,000	H. Matsuoka et al., RCNP Annual Report 1990
Bending Radius:	1.75 m	
Bending Angle:	70 deg	大口径スペクトログラフ "LAS"
Bending Power:	3.22Tm	
Dispersion:	2 m	
Solid Angle:	~20 msr	
Momentum Acceptance:	30 %	D
Horizontal Magnification:	-0.40	0
Vertical Magnification:	-7.3	FP
Angle:	0-130 deg	
		T :標的
		Q : 4 重極電磁石
		D : 双極電磁石
		F P:焦点面
		0 1 2 m

大口径スペクトログラフの構成

Two Multi-Wire Drift Chambers Plastic Scintillators

Double Arm Spectrometer: Grand Raiden and LAS

Grand Raiden		~	LAS	
Resolving Power:	37,000		Resolving Power:	5,000
Bending Radius:	3 m		Bending Radius:	1.75 m
Bending Angle:	162 deg	11/1	Bending Angle:	70 deg
Bending Power:	5.4 Tm	X	Bending Power:	3.22Tm
Dispersion:	15.4 m	M	Dispersion:	2 m
Solid Angle:	~4 msr		Solid Angle:	~ 20 msr
Momentum Acceptance:	5 %		Momentum Acceptance:	30 %
Horizontal Magnification:	-0.42		Horizontal Magnification:	-0.40
Vertical Magnification: 6.0		-4	Vertical Magnification:-7.3	
Angle:	0-70 deg		Angle:	0- 130 deg
				K====
	クランド雷電の構成		大口径スペクトロ	クラフの構成

