RCNP workshop on "LEPS2/SPring-8", Jan. 9, 2007

Study of photoproduction of vector mesons

Tomoaki Hotta (RCNP, Osaka Univ.)

- Introduction
- Vector meson photoproduction at large |t|
 existing data and interpretations
 - theoretical predictions
- Prospects for LEPS2

Introduction

- LEPS experiment
 - Backward Compton photon beam = low-background beam
 - \rightarrow Forward spectrometer.
 - Polarized photon.

forward ϕ photoproduction, K⁺ photoproduction u-channel meson production.

• LEPS → LEPS2

- Higher photon intensity.
- Higher photon energy (~ 7 GeV /w X-ray injection).
- <u>Large acceptance</u> detector (BNL-E949 magnet).

strong competitor: CLAS@JLAB

Comparison of Detector Acceptance

(numbers are not very precise)

detector	Magnet Type	θ ^{lab} coverage (deg.)	Comment
LEPS	Dipole	2 ~ 20	
LEPS + TPC	Dipole + Solenoid	2 ~ 4 (*) 30 ~ 100	(*) depending on target position
CLAS @JLAB	Toroidal	10 ~ 100	For positive particles
LEPS2 (E949)	Solenoid	10(5) ~ 90	<i>p</i> resolution is high for θ >10deg.

Advantage of LEPS2 (solenoid)

• Same acceptance for positively and negatively charged particles.

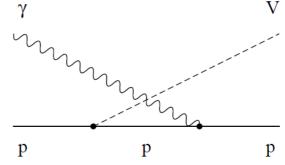
\rightarrow suitable for detecting multi-particle final states.

• CLAS has small acceptance for negative particles because they are bended inside by the toroidal field.

(example)

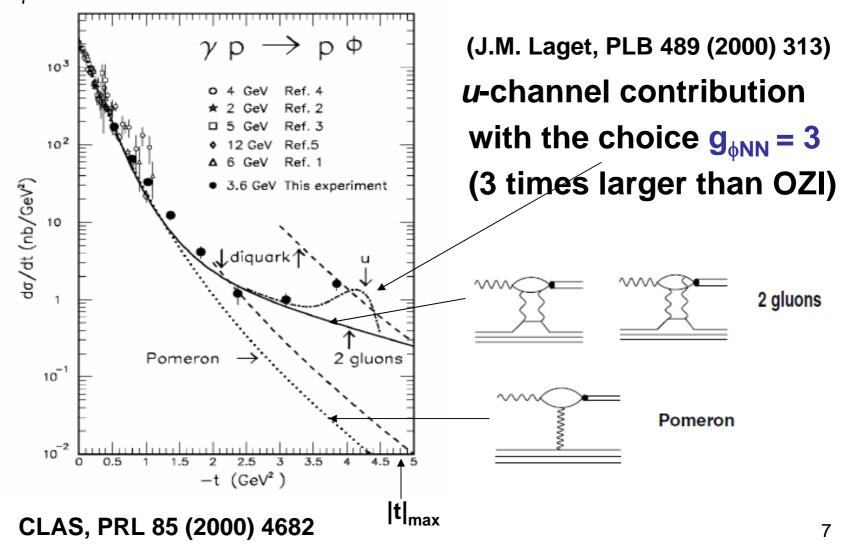
- γ p → φ p → K⁺ K⁻ p
 K⁺K⁻, K⁺ p, K⁻p, KKp at LEPS2 (and LEPS)
 K⁺ p only at CLAS
 → limits the kinematical coverage.
- $\gamma \mathbf{p} \rightarrow \omega \mathbf{p} \rightarrow \pi^+ \pi^- \pi^0 \mathbf{p}$

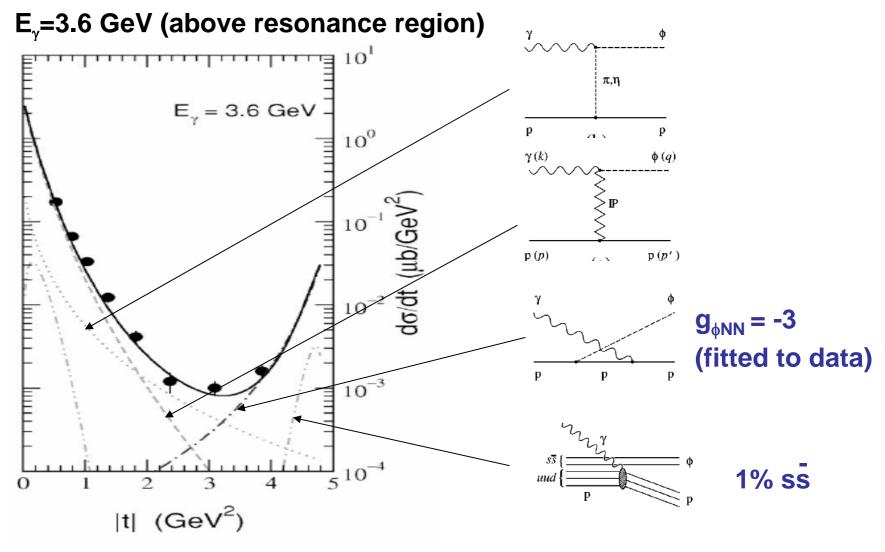
Overview of vector meson photoproduction mechanism


Forward angles (small momentum transfer |t|)
 VDM picture, diffractive production.
 Pomeron (multi-gluon) exchange
 & meson exchange

meson exchange is suppressed for ϕ .

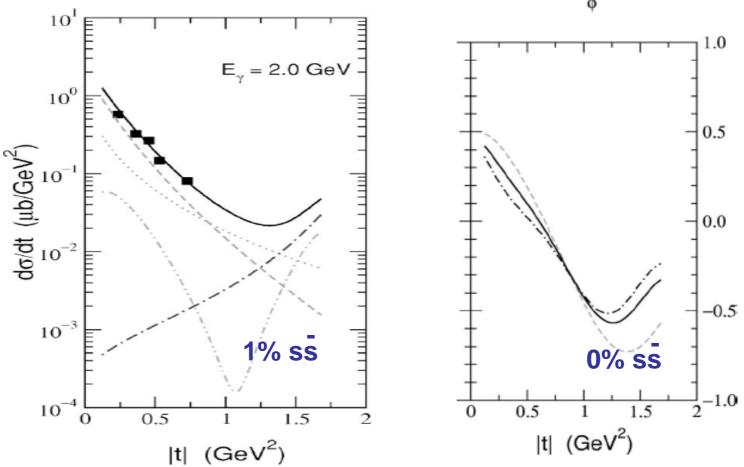
Overview of vector meson photoproduction mechanism


Backward (~ |t|_{max}, small |u|)
 u-channel nucleon exchange.


- Intermediate angles (both |t| and |u| are large)
 Production mechanism is energy dependent & not very clear.
 - s-channel resonance excitation
 - quark exchange
 - 2 gluon exchange with quark correlations in N.

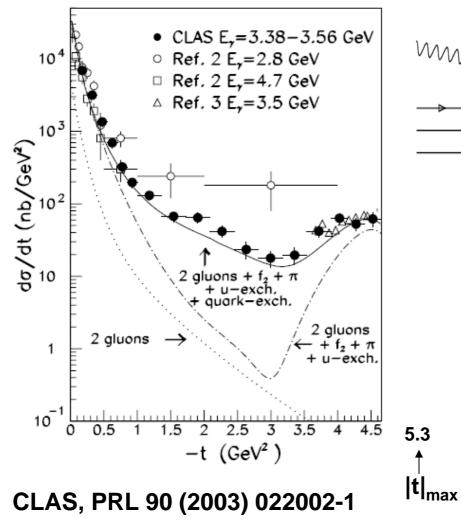
Existing data: photoproduction at CLAS

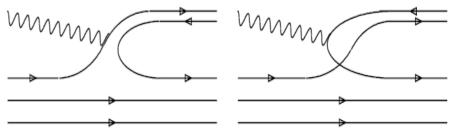
E_v=3.6 GeV (above resonance region)


Existing data: ϕ **photoproduction at CLAS**

(Y. Oh and H.C. Bang, PRC 64 (2001) 055207)

Theoretical prediction for E $_{\gamma}$ =2 GeV

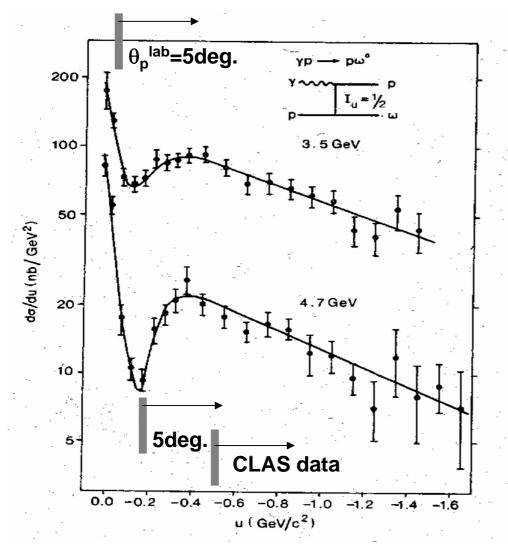

May be possible at LEPS2 (high intensity beam & large acceptance detector) Σ_{ϕ}


(Y. Oh and H.C. Bang, PRC 64 (2001) 055207)

Existing data: (a) photoproduction at CLAS

(above resonance region)

(J.M. Laget, PLB 489 (2000) 313)

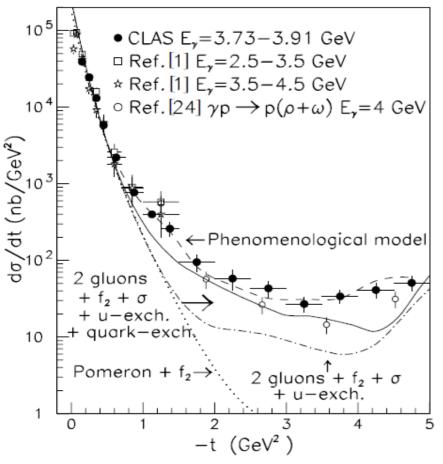


quark exchange contribution u-channel: Nucleon Regge traj. t-channel: $f_2(1270) + \pi$ exchange

Different theoretical approach

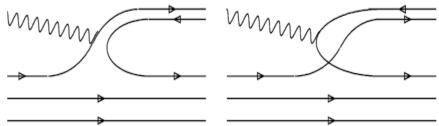
w/o quark exchange ωNN coupling (Sibirtsev, Tsushima, & Krewald, nucl-th/0202083)

Existing data: u-channel ω photoproduction


 $\gamma p \rightarrow p X$ (missing X = ω)

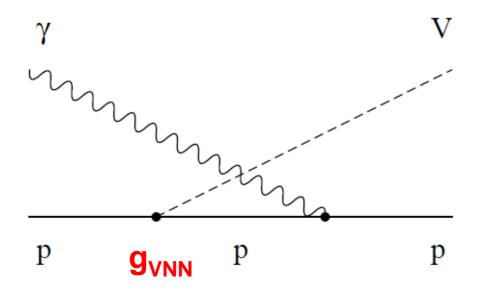
u-channel: Nucleon Regge traj. quark exchange contribution **Question?** Prominent dip structure at u ~ - 0.1 GeV² ? Not seen for ρ^0 photoproduction with same setup. (PL 64B (1976) 213) ? Difficult to reproduce theoretically (nucl-th/0202083)

NINA, PL 72B (1977) 144


Existing data: ρ^0 photoproduction at CLAS

(above resonance region)

CLAS, PRL 90 (2003) 022002-1

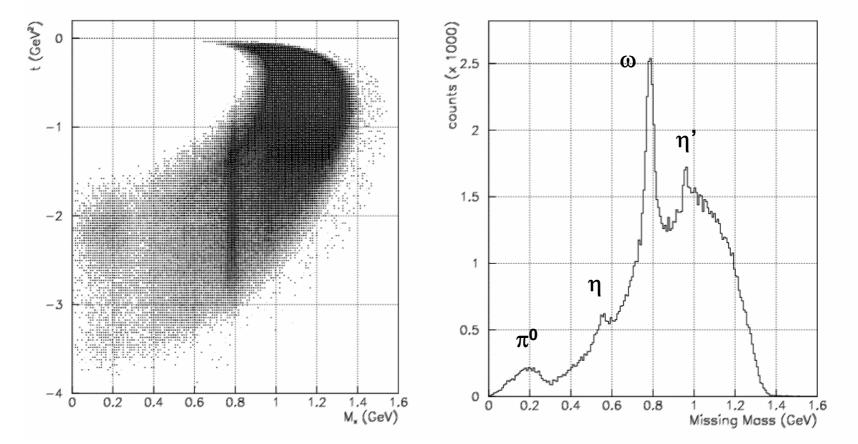

(J.M. Laget, PLB 489 (2000) 313)

quark exchange contribution u-channel: N & \triangle Regge traj. t-channel: f₂(1270) + σ exchange

Different theoretical approach 2π , σ , f_2 exchange. ρ NN coupling $\leftarrow \pi$ N scat. data ^{5.9} (Oh & Lee, PRC 69 (2004) 25201) \uparrow $|t|_{max}$

u-channel meson production

direct probe for multiquark component


To see u-channel process clearly...

- Measurement of N at extremely forward angle.
- Choice of energy to reduce "background" process.
 - s-channel resonance contribution
 - hard process
- Polarization observables

$\gamma p \rightarrow p X$ reaction at LEPS

Eγ = 1.5 ~ 2.4 GeV

$\gamma p \rightarrow p X$ reaction at LEPS

- LEPS data of backward (π⁰, η, ω, η') production on proton will be reported soon.
 cross section & photon beam asym.
- ρ^0 is not seen in the missing mass spectra.
 - − large width and background in $\gamma p \rightarrow pX$ mode: ...can be seen by detecting decay particles.
- ϕ is not seen
 - background in γp → pX mode: ...can be seen by detecting decay particles.
 - small cross section? : ...with high intensity beam.

Summary and Prospects for LEPS2

- Photoproduction of vector meson at large angles.
 - u-channel production \rightarrow NNV coupling.

- LEPS and LEPS2 experiments can give us new information
 - different kinematics (extremely forward or backward angles)
 - measurement of decay particles.
 - polarization observables.
 - LEPS2 (E949) + forward spectrometer combination may be important for this subject.