Study of ϕ-N interaction at LEPS2

Tsutomu Mibe

Department of Physics and Astronomy
Ohio University
and
Jefferson Laboratory
\(\phi\)-nucleon interactions

- Contributions from quark exchanges are suppressed.
- Unique place to study multi-gluon exchange processes.
- Not well-studied because of difficulties in making \(\phi\)-meson beam.
Vector Meson Dominance (VMD)

- Photon $J^{PC} = 1-$
- Vector mesons ($\rho,\omega,\phi,J/\psi \ldots$) $J^{PC} = 1-$

\[\Delta t \approx \frac{2E_\gamma}{m_{VM}^2} \approx 1\text{ fm} / c \]

for ϕ-meson, $E_\gamma = 3$ GeV
Diffreactive ϕ photoproduction on proton

$\gamma \rightarrow \phi$

X=Pomeron...

$\gamma p \rightarrow \phi p$

E_γ dependence is not understood by the theory

LEPS/SAPHIR inconsistency
CLAS g10 proton data

\[\gamma p \rightarrow \phi p \]

Study of \(\phi\)-N interaction at LEPS2, T. Mibe, 1/9/2007

Preliminary
CLAS g11 proton data
\[\gamma p \rightarrow \phi p\]
Diffreactive ϕ photoproduction on proton

\[\gamma \rightarrow \phi \]

\[p \rightarrow p \]

New results from two independent data from CLAS.

Good consistency with LEPS data.
At LEPS2

- Improved measurements of dσ/dt at t=−|t|\textsubscript{min} with proton target
 - Wide energy range (E_γ=1.6-6 GeV)
 - Without extrapolation from larger −t
 - Good forward-angle coverage is essential (challenging to current/future facilities at Jlab)

- Coherent production off of deuteron (l=0)
 - Isospin filtering
 - Extension of current efforts by Chang, Horie, Shimizu et al.
VMD and total ϕN cross section

- Vector meson dominance
 \[T_{\gamma N \rightarrow \phi N} = \alpha_{\gamma \phi} T_{\phi N \rightarrow \phi N} \]

- Optical theorem
 \[\sigma_{\phi N} = 4\pi \text{ Im}(T_{\phi N \rightarrow \phi N}) \]

- Diff. cross section at $t=0$
 \[\left. \frac{d\sigma_{\gamma N \rightarrow \phi N}}{dt} \right|_{t=0} = \alpha_{\gamma \phi}^2 \frac{p_{\phi}^2}{p_{\gamma}^2} \left(1 - \beta^2\right) \sigma_{\phi N}^2 \]

- VMD estimate, $\sigma_{\phi N} \sim 10$-12 mb
\(\sigma_{\phi N} \) from A dependence

- \(\sigma_{\phi N}^{\text{inel}} \) is measured by a nuclear transmission factor (\(T_A \)) from A-dependence:
 \[
 T_A = \frac{\sigma_{\gamma A \rightarrow \phi X}}{A \sigma_{\gamma N \rightarrow \phi X}}
 \]

- LEPS data (\(E_\gamma = 1.6-2.4 \text{ GeV} \)) on A-dependence:
 \(\sigma_{\phi N}^{\text{inel}} = 35^{+17}_{-11} \text{ mb} \)

- Much larger than VDM estimate
 \(\sigma_{\phi N} = \sigma_{\phi N}^{\text{el}} + \sigma_{\phi N}^{\text{inel}} = 10-12 \text{ mb} \)

Coherent ϕ-meson photo-production on deuterium

- Single scattering
 \[\gamma + d \rightarrow \phi + d \]
- Double scattering
 \[\gamma + d \rightarrow \phi + d \]

Same model successfully describes ρ-meson data with known $\sigma_{\rho N}$

Model: T. Rogers, M. Sargsian, M. Strikman
Coherent ϕ-meson photo-production on deuterium

- Vector Meson Dominance
- $T_{\gamma N \rightarrow \phi N} = \alpha_{\gamma \phi} T_{\phi N \rightarrow \phi N}$

No experimental justification at low energy
Coherent ϕ-meson photo-production on deuterium

- Non-VDM case
- $T_{\gamma N \to \phi N} \neq \alpha_{\gamma \phi} T_{\phi N \to \phi N}$
- $T_{\phi N \to \phi N} = \sigma_{\phi N} (i+\beta) e^{b/2 t}$

![Graph showing the relationship between E_{γ} and $d\sigma/dt$ for different models and experimental data.](image)
φ-N cross section

- Tantalizing difference in $\sigma_{\phi N}$ estimated from γp data (10-12mb) and LEPS γA data (~30mb).

- **New CLAS deuteron data**
 - Data is consistent with 10mb in the framework of VMD. Inconsistency with γA data remains.
 - Larger $\sigma_{\phi N}$ from γA data can be understood if the t-slope for the reaction $\phi N \rightarrow \phi N$ is larger than the reaction $\gamma p \rightarrow \phi p$.

- **Larger t-slope → Larger interaction radius** (cross section)
 - Are we really measuring $\sigma_{\phi N}$?
 - If so, what makes ϕ-meson fat ?

- Apparently, there is something beyond the VMD picture.
At LEPS2

- Photon energy dependence of ϕ meson absorption in nucleus
 - Extension to previous γA measurement (by Ishikawa et al., $E_{\gamma}<2.4$ GeV)
 - VMD should work better at higher photon energy.

\[
\Delta t \approx \frac{2E_{\gamma}}{m_{VM}^2}
\]

If multi-step process like $\gamma N \rightarrow \omega N, \omega N \rightarrow \phi N$ were important, data would never reach the VMD value.
Summary

- Two mysteries as of 2004
 - E_γ dependence of $\gamma p \rightarrow \phi p$ cross section in LEPS γp data
 - Larger $\sigma_{\phi N}$ in LEPS γA data

- CLAS is in the game now. New results from CLAS make things clearer. But not yet fully understood.

- LEPS2 could make major contribution to the issues of ϕ-N interaction.
Lead investigators

- H. Gao (Duke), K. Hicks (Ohio), K. Kramer (Duke), T. Mibe (Ohio), S. Stepanyan (Jlab), D. Tedeschi (USC).
- and the CLAS collaboration

- Theoretical supports from
 - T. Rogers, M. Strikman (PSU), M. Sargsian (FSU)
 - A. Titov (RIKEN, JINR)
 - J-M. Laget (CEA Saclay)