

SPring -

Outline

- •Physics Motivation
- •Beamline
- •Detector
- Schedule
- Collaboration

Quantum Chromo Dynamics

Perturbative region

Current quark

Chiral symetry is a good symmetry

Parton model

Precise determination of spin structure functions: GPD Color confinement

Spontaneous breakdown of chiral symmetry

Generation of Hadron mass

Creation of NG bosons: π , K, η

Non-Perturbative region

Consitituent quark

Flavor SU(3) symmetry is a good symmetry

Quark model

Multi quark hadron physics: pentaquark, tetraquark, mesonbaryon resonances

What are effective degrees of freedom?

Meson cloud picture: Thomas, Speth, Weise, Oset, Jido, Brodsky, Ma, ... $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 |\mathbf{n} (\mathbf{udd}) \pi^+ (\overline{\mathbf{du}}) >$ $+ \varepsilon_2 |\Delta^{++} (\mathbf{uuu}) \pi^- (\overline{\mathbf{ud}}) > + \varepsilon' |\Lambda (\mathbf{uds}) \mathbf{K}^+ (\overline{\mathbf{su}}) > \dots$

Di-quark cluster (5-quark) picture: Zou, Riska, Jaffe, Wilczek $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 | [\mathbf{ud}][\mathbf{ud}] \ \mathbf{d} > + \varepsilon_2 | [\mathbf{ud}][\mathbf{us}] \ \mathbf{s} > + \dots$

How to study multi-quark hadron physics?

- Study reaction mechanism and production rates of possible multi-quark dominant states.
- Study decay properties of possible multiquark dominant states.
- Find a pentaquark.

SU(3)_f symmetry will be a key to understand the nature of multi-quark states.

→ Study relations among various reactions and decays.

Laser Electron Photon at SPring-8

Advantage of Laser-Electron Photon Beam for Hadron physics

- Hadronic component of a photon contains a large fraction of ss.
- Isospin dependence is not trivial because a γ contains both I=0 and I=1 components.
- Linear polarization can be used as a parity filter.
- The polarization can be changed easily.

Disadvantage is low interaction rates. \rightarrow Require high beam intensity and large detector acceptance.

t-channel process

- dominates in the forward angles.
- can access to a baryon below MB.
- Linearly polarized photons work as a parity filter.

 $\gamma p - > K^* \Lambda (1405)$

- K⁻ must be virtual because Λ(1405) is lighter than pK⁻.
- K⁻ exchange can be enhanced by selecting events where γ^{*}is perpendicular to K^{*}.
 - z1=1390+66i

– z2=1426+16i

Not

enough

at LEPS

The study requires:

- high energy
- high intensity
- high polarization
- wide acceptance +

Pentaquark Θ^+ at LEPS

γ **n→K⁺K⁻n**

γ d→Λ(1520)KN

In the both reactions, K⁺ exchange is possible and should be dominant. \rightarrow require good forward acceptance.

Can we still believe in the existence of the Θ^+ ?

- •What do we have seen and what have not seen?
- •How strong are the evidences?
- •What does make it difficult to confirm the state?
- •How important is a good resolution?
- •How important is background rejection?.
- •What should we do to prove its existence?

I will answer these questions tomorrow.

u-channel process

- dominates in the backward angles (forward angles in terms of a nucleon).
- is sensitive to g_{NNM} .

Missing mass distribution

missing mass (GeV/c²)

Beam line map of Spring-8

BL status:14 Beam lines available (30m x3, 6m x8, Bending x3)

New Beamline Project at SPring-8

Divergence of LEP beam

Expected Intensity

- LEP Intensity with Ar laser [351 nm, 6.5 W, CW] : ~800 Kcps
 ⇒ Paladin (Solid state & 80 MHz pulsed laser) [355 nm, 8 W]
 - 4-laser injection w/ larger aperture beamline x4
 - Paladin 16 W model may be available in future. (x2)
 - Twice energy density by laser beam shaping in vertical direction
 - \Rightarrow In total 8-16 times more intensity relative to Ar laser

(Note: 2 Mcps has been achieved by 2-laser injection at BL33LEP.)

x2

x2

- LEP Intensity with Deep-UV laser [257 nm, 1-1.5 W, CW] : ~150 Kcps
 - 4-laser injection (4-different focus points) x4
 - laser beam shaping
 - vertically long beam shape because of SHG → horizontally long shape (like electron beam) by mirrors [additional factor]
 - \Rightarrow In total 8+ α times more intensity

Multi-laser Injection

- 80 MHz pulsed laser : (1) quasi-CW (2) no interference
- 2-laser injection has been installed at BL33LEP. \Rightarrow ~2 Mcps
- Aperture of BL33LEP is narrow. [Only 20 mm / laser is allowed.]
 - ⇒ Larger aperture will give more efficient transmission and allow additional laser injections.

Distance from 1st mirror (m)

40

Backward Compton Scattering of X-ray for Ultra High Energy LEP

SPring - 8

LEPS2 チェンバー案

- ·ベンディングチェンバーBM1とクロッチチェンバーCR1の一体化
- ·反跳電子軌道上は高さ10mm程度の扇形のスロットを作る
- ·反跳電子取出し口のチェンバー壁の薄肉化(数mm、要真空力対策)
- ・干渉を避けるため偏向電磁石の反転
- (重心が変わるため架台も設置しなおす必要あり)
- ・クロッチアブソーバ改造(後述)

Detector system

- Momentum resolution at forward angle $\Delta p/p \sim 1\%$.
- K/ π identification up to ~1.5 GeV/c.
- Large and smooth acceptance azimuthally
 → Decay and polarization.
- Detection of decay products down to low momentum of ~100 MeV/c
- Detection of neutral particle (Photon)

BNL-E949 Detector

(As a general-purpose detector with large solid angle)

Cylindrical detector for the measurement of decay from kaon at rest 1.0 T magnet, Bore size : 2.96-m diameter × 2.22-m length 1.1 MW, 4400 A

BNL-E949 detector Designed for K⁺ ⁺vv

Solenoid

1 T

- •I nner volume 2.22x2.96 m
- •Barrel Photon detector Plastic & lead sandwich detector 14.3X₀
 - Energy and position
- •Range counter
 - Plastic scintillators 19 layers Enegy and Range

Setup 3D

Setup for Tracking system

•SSD (Cylindrical+ Corn)

Double side, σ=35um, 100um thick,

• TPC

Ar+Methan (P10) R = 500 mm (26 layer), $\sigma_{r\phi}$ =150um,

• Forward MWDC chamber He4+Ethane, R = 450 mm, 6 wire plane, σ_{xy} =150um, X/X₀ = 1.1x10⁻³,

Barrel tracker

Cathode strip + Anode wire $\sigma_{r\phi}$ = 250um, σ_z = 2-3 mm

$\Delta P/P$ at forward region

GEANT4 Simulation

For 1 GeV kaon at 10 degree

- △P/P = 1.4% (He4 gas) 1.9% (Air)
- → Momentum dependence

PID (TOF) at forward angle

P = 1.5 GeV

N(π)/N(K) = 10³ 3 % in 2σ cut →6σ at 1.5 GeV/c

TPC or CDC

kaon

4 **Resolution %** 3

4

3

2.5

2

1.5

1

0.5

0

PID in TPC (Ar:Methan) for low momentum particles.

Momentum(GeV/c)

Pentaquark: Θ^+

Angular acceptance

geometrical acceptance 50%

 $\gamma d \rightarrow \Lambda (1520) \Theta^+$

Missing Mass

 $\Delta M(\Theta^+)=17 \text{ MeV/c}^2$

+ Kinematical fit

 $\Delta M(\Theta^+)=10 \text{ MeV/c}^2$

Invariant Mass

 $\Delta M(\Theta^{+})=3 \text{ MeV/c}^{2}$

γp→K^{*}Λ(1405)

スケジュール

X線反射システム建設

E949検出器解体作業風景

既に、例えば光電子増倍管を1296本(全体の96%)の取り外しが終了)

Research Center for Nuclear Physics, Osaka University D.S. Ahn, M. Fujiwara, T. Hotta, Y. Kato, K. Kino, H. Kohri, Y. Maeda, N. Muramatsu, T. Nakano, M. Niiyama, T. Sawada, M. Sumihama, M. Uchida, M. Yosoi, T. Yorita, R.G.T. Zegers Department of Physics, Pusan National University : J.K. Ahn School of Physics, Seoul National University : H.C. Bhang Department of Physics, Konan University : H. Akimune Japan Atomic Energy Research Institute / SPring-8 : Y. Asano, A. Titov Institute of Physics, Academia Sinica : W.C. Chang, J.Y. Chen, B.R. Lin, D.S. Oshuev Japan Synchrotron Radiation Research Institute (JASRI) / SPring-8 : S. Date', H. Ejiri, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa Department of Physics and Astronomy, Ohio University : K. Hicks, T. Mibe **Department of Physics, Kyoto University** : K. Imai, H. Fujimura, M. Miyabe, Y. Nakatsugawa, T. Tsunemi Department of Physics, Chiba University : H. Kawai, T. Ooba, Y. Shiino Wakayama Medical University : S. Makino Department of Physics and Astrophysics, Nagoya University : S. Fukui Department of Physics, Yamagata University : T. Iwata **Department of Physics, Osaka University** : S. Ajimura, K. Horie, M. Nomachi, A. Sakaguchi, S. Shimizu, Y. Sugaya **Department of Physics and Engineering Physics, University of Saskatchewan** : C. Rangacharyulu Laboratory of Nuclear Science, Tohoku University : T. Ishikawa, H. Shimizu Department of Applied Physics, Miyazaki University : T. Matsuda, Y. Toi Institute for Protein Research, Osaka University : M. Yoshimura National Defense Academy in Japan : T. Matsumura

LEPS2 Collaboration

