Pentaquark ⊕⁺ Search in Hadornic Reaction - complement to photo production -

M. Naruki, RIKEN

Contents:

- Introduction
- Past experiments: KEK-PS E522 & E559
- Future experiment: J-PARC E19

What is Pentaquark?

Irreducible 5 quark state contain an anti-quark different in flavor than the 4 quarks The Θ^+ : uuddsbar Baryon number = 1/3 + 1/3 + 1/3 + 1/3 - 1/3 = 1Strangeness = 0 + 0 + 0 + 0 + 1 = +1Quark description: Jaffe, Wilczek Chiral soliton model: Diakonov et al. M=1530 MeV, <u>Г~15 MeV</u> (ud)rigid core (q^3) L=1S Meson (ud)Fields (qqbar)

Approach quark dynamics at low energy

Discovery of Θ^+ baryon

Theoretical Prediction

Diakonov et al. Z. Phys. A359 ('97) 305

- Anti-decuplet in Chiral soliton model
- M=1530 MeV, Γ< 15MeV

Experiment

- LEPS at Spring-8 ('03)
- $\gamma C \rightarrow K^- \Theta^+ X \rightarrow K^- K^+ n$
- M=1540±10 MeV
- Γ<25 MeV
 PRL 91(03)012002

Positive Results

Negative Results

Negative Results

Exp.	√s(E _{beam})	Reaction	Upper Limit
BES	3.7GeV	$e^+e^- \rightarrow J/\psi \rightarrow \Theta\Theta$	< 1.1 \times 10 ⁻⁵ B.R.
BaBar	10.58GeV	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow pK^0X$	< 1.0 \times 10 ⁻⁴ B.R.
Belle	11GeV	e⁺e⁻ → BB → ppKºX	< 2.3 × 10 ⁻⁷ B.R.
LEP	198GeV	$e^+e^- \rightarrow Z \rightarrow pK^0X$	< 6.2×10^{-4} B.R.
HERA-B	41.6GeV	$pA \rightarrow K^{0}pX$	$< 0.02 \times \Lambda^{\star}$
SPHINX	11.5GeV	$pC \rightarrow K^0 \Theta^{+} X$	< 0.1 × Λ*
HyperCP	(800GeV)	$pCu \rightarrow K^{0}pX$	< 0.3% К ^о р
CDF	1.96TeV	$pp \rightarrow K^{o}pX$	$< 0.03 \times \Lambda^{\star}$
FOCUS	~300GeV	$\gamma BeO \rightarrow K^{o}pX$	$< 0.02 \times \Sigma^*$
Belle	(~0.6GeV)	$K^+A \rightarrow pK_s^0$	$\Gamma < 0.64 \text{ MeV}$
PHENIX	200GeV	Au + Au → K⁻nX	-
BaBar	9.4GeV	eBe → K⁰pX	-
CLAS-d	0.8-3.6GeV	$\gamma d \rightarrow pK^{-}K^{+}(n)$	3nb for γn
CLAS-p	<3.8GeV	$\gamma p \rightarrow K^{\circ} K N$	0.8nb

New Negative Results : $\gamma p \rightarrow K^0 \Theta^+$

The result puts a very stringent limit on a possible production mechanism of the Θ^+ ; it implies a very small coupling to K*.

 $g_{NK^*\Theta+} \sim 0$

Positive Results

Exp.	Energy(√s)	Reaction	Mass	Width	σ	
LEPS	≤2.4GeV	$\gamma C \rightarrow K^-K^+(n)$	1540 ± 10	< 25	4.6	*
DIANA	≤750MeV/c	K⁺Xe →K⁰pX	1539 ± 2	< 9	4.4	*Belle
CLAS-d	1.58-3.8GeV	γ <mark>d → pK⁻K⁺(n)</mark>	1542 ± 5	× 21	5.2	
SAPHIR	≤2.8GeV	γ <mark>p → K</mark> ⁰K⁺(n)	1540 ± 6	< 25	4.8	
ITEP	40GeV	$v A \rightarrow K^{0} p X$	$1533\pm\ 5$	< 20	6.7	
CLAS-p	3-5.47GeV	$\gamma p \rightarrow \pi^+ K^- K^+(n)$	1555 ± 10	< 26	7.8	
HERMES	27.6GeV	e⁺d → K⁰pX	1528 ± 3	13 ± 9	4.2	?
ZEUS	(300,318GeV)	e⁺p → e′K⁰pX	1522 ± 3	8 ± 4	4~5	?
COSY	2.95GeV/c	$pp \rightarrow K^0 p\Sigma^+$	$1530\pm\ 5$	< 18	4-6	
SVD	70GeV/c	$pA \rightarrow K^{0}pX$	1526 ± 5	< 24	5.6	*
BaBar	(10.58GeV)	eBe→K⁰pX			kallana	ina tha
CLAS-d	0.8-3.6GeV	γd → pK⁻K⁺(n)	above positive results.			
CLAS-p	<3.8GeV	$\gamma p \rightarrow K^{\circ}KN$				

Best Positive Evidence

Super-g Eγ ~ 3.8 – 5.7 GeV planned for 2006

- $\gamma p \rightarrow \pi^+ K^- K^+(n)$
- CLAS: V. Kubarovsky *et al.* PRL <u>92</u> 032001 (2004)
- Combined analysis of all CLAS data on protons for $E\gamma$ <5.2 GeV
- Cuts: forward π^+ , backward K⁺
- indications of production from heavy N*(2420)

Θ^+ Search in meson-induced reactions

Can the "positive" low energy results be reproduced?
 better statistics is needed.

- ✓ How far can we restrict the width to?
 - the width appears to be very narrow. ~ 1MeV.
- ✓ Spin and Parity → width

hadronic reaction

Since we already know that the K* coupling is small, the possible production mechanism will be clarified in the following meson induced reactions.

KEK-PS E522 : *π*[−]**p**→K[−]X

- Θ^+ search via $\pi^-p \rightarrow K^-X$ reaction
- beam momentum : 1.87, 1.92 GeV/c
- target : Polyethylene
- intensity : 3.3 X 10⁵ π^- /spill
- net beam time : 32 hours for each momentum \rightarrow ~ 7 X 10⁹ π ⁻

a bump was observed at M =1530.8MeV/c2 at p_{π} =1.92 GeV/c but : S/N = 2.5 σ upper limit : σ_{tot} = 3.9 μ b

 $\sigma(\pi^- p \rightarrow K^- \Theta^+)$: KEK-PS E522

Theoretical calculation with effective Lagrangian

Form factor determined from $\pi N \rightarrow K\Lambda$ reaction

KEK-PS E559 : $K^+p^{\rightarrow}\pi^+\Theta^+$

- Θ^+ search via K⁺p $\rightarrow \pi^+X$ reaction
 - K6 beam line + SKS spectrometer
- Excellent missing mass resolution
 - 2.4MeV (FWHM) expected
 - Checked by $\pi^+p \rightarrow K^+\Sigma^+$
- Decay event suppression
 - Rejection of 3 body decay of K⁺ is crucial
 - Large acceptance chamber
 - Range Counter

Missing Mass spectrum (K⁺p $\rightarrow \pi^+X$)

No significant peak is observed.

upper limit of cross section at 90% C.L.

- Total cross section < $7.1 \mu b$
- Differential cross section <

Impact on Θ^+ production mechanism

J-PARC E19 experiment

- natural expansion of E522 ($\pi p \rightarrow KX@K2$)
- ~5 times better resolution : ~ 2.5MeV FWHM with SKS
 - 10 times better S/N
- 100 times larger yield : 1.2 X 10⁴ Θ ⁺ with 20 shifts

• expected sensitivity (lab) 75nb/sr Γ < 2 MeV $\rightarrow \sigma_{tot} \sim$ 112nb 150nb/sr Γ = 10 MeV

• momentum dependence of cross section : $p_{\pi} = (1.87, 1.92, 1.97 \text{GeV/c})$

J-PARC Facility

Hadron Beam Facility

J-PARC E19 Collaboration

RIKEN M. Naruki

KEK

RCNP

Kyoto Univ.

- S. Ishimoto, T. Maruta, Y. Sato, S. Sawada and M. Sekimoto
- S. Dairaku, H. Fujimura, K. Imai, K. Miwa, Y. Nakatsugawa, N. Saito and K. Tanida
- Osaka Univ. S. Ajimura
 - M. Niiyama
- Tohoku Univ. H. Tamura
- Univ. of Tokyo
 - H. Fujioka, D. Nakajima and T.N. Takahashi

Experimental Method

- K1.8 beam line + SKS
- 2GeV/c π^- + p \rightarrow K⁻ + Θ^+ target : liquid H₂, reuse E559's
- K⁻ : scattered angle ≤ 40° momentum up to 0.9 GeV/c
- SKS : momentum coverage : 0.7-0.95GeV/c

angle coverage $\leq 20^{\circ}$ $p_{scattered}$ up to ~ 1.1 GeV/c $dp/p \sim 0.2\%$ @ 1GeV/c (~10 times better than KURAMA) ideal for Θ^+ detection

Missing Mass Resolution

Expected Missing Mass Spectrum

phase space : K⁻KN 26 μb

significance : 62σ assuming $\Gamma < 2MeV$ $\sigma = 1.9\mu b$

Expected Yield & Sensitivity

- yield
 - beam pions :160 hours beam time \rightarrow 4.8 X 10¹¹ π for each p_{π}
 - SKS acceptance : 0.1 sr
 - analysis efficiency : 50%
 - K decay : 50% ← TOF 4.7m
 - − 1.9µb/sr @ p_{π} =1.92GeV/c ← E522 → 1.2 X 10⁴ events
- background
 - 0.8 $\mu b/sr/MeV$ @ 1.530MeV for proton target \leftarrow E522
 - momentum flat

 \rightarrow 5.0 X 10³ counts/MeV

 statistics

 62σ
 Γ < 2 MeV</td>

 48σ
 Γ = 10 MeV

sensitivity75nb/sr $\Gamma < 2 \text{ MeV}$ 150nb/sr $\Gamma = 10 \text{ MeV}$

Summary

• E559 experiment searched for Θ^+ in (K⁺, π^+) reaction but observed no peak structure.

– we set an upper limit of 7.1µb and 1.9µb/sr at 90% C.L.

- E522 experiment searched for Θ⁺ in (π⁻, K⁻) reaction and observed bump structure around 1.53GeV with statistical significance of 2.5σ.
- J-PARC E19 experiment was approved to search for Θ⁺ in (π⁻, K⁻).
 - K1.8 beam line + SKS is ideal for Θ^+ production
 - s-channel production at low energy
 - hadronic reaction \rightarrow high statistics
 - with high mass resolution; 2.5MeV(FWHM)

strategy to read the conclusion

Spring-8/J-Lab

- photo-production
 - γn→K⁻Θ⁺
 - − $\gamma p \rightarrow \pi^+ K^- K^+(n)$
- meson induced reaction
 - $-\pi^-p \rightarrow K^-\Theta^+$ J-PARC
- pp collision
 - $pp \rightarrow \Sigma^+ \Theta^+$ COSY
 - baryon fragmentation?
 - formation process
 - $-Kn \rightarrow K_s^{0}p$

J-PARC

