

Experiments with γ detectors at LEPS2

H. Shimizu

Laboratory of Nuclear Science Tohoku University

LEPS2 Workshop, RCNP, Jan 8-9, 2007

Diversity of Hadron Physics

Some physics to be discussed in the LEPS2 project

1) Hadrons under χS

* meson sector

- (a) study of Namb-Goldstone bosons in free space
- (b) partial restoration of χS in nuclei \Rightarrow softening of σ
- (c) $U_A(1)$ anomaly

 $U_A(1)$ restoration? <= χ S restoration (experiments)

* baryon sector (N*: negative parity baryon)

2 kinds of χ transformations

2) Hadrons and exotics

* pentaquark baryons

 $\Theta^{\scriptscriptstyle +}$ and others in the anti-decuplet

* dibaryon (I,J^{PC}=0,0⁻)

3) QED higher order effects (measurement of birefringence)

* direct measurement of the vacuum polarization

Hadrons under chiral symmetry

* Meson sector (a) σ in free space experiments with y detectors $\sigma \rightarrow 2\gamma$ (BR~10⁻⁵) (b) Partial restoration of χS in nuclei ++ softening of σ $\sigma \rightarrow 2\gamma$ $\sigma \rightarrow 2\pi^0$ (c) Study of Namb-Goldstone bosons ++ measurements of π^0 polarizabilities ++ transition form factors of η (d) $U_A(1)$ problem "Does χS restoration affect the U_A(1) problem?" $++\eta' \rightarrow 2\gamma$ in nuclei

Pion Polarizabilities

• Electromagnetic polarizabilities of a meson M: The polarizabilities α_M and β_M measure the induced meson dipole moments

$$d = \alpha_M E$$
$$m = \beta_M B$$

in an external field E and B.

• How to measure the polarizabilities:

a reflection of the internal structure of the particle

(1)

one of the most fundamental properties of the particle

Compton amplitude at low energies

$$T(\gamma \pi \to \gamma \pi) = -2e^{2}(\boldsymbol{\epsilon}_{1} \cdot \boldsymbol{\epsilon}_{2}) +2m[\alpha_{\pi}\omega_{1}\omega_{2}(\boldsymbol{\epsilon}_{1} \cdot \boldsymbol{\epsilon}_{2}) +\beta_{\pi}(\boldsymbol{\epsilon}_{1} \times \boldsymbol{k}_{1}) \cdot (\boldsymbol{\epsilon}_{2} \times \boldsymbol{k}_{2})]$$
(2)

Measurements for polarizabilities of charged pions

Serpukhov

SPring-8/LEPS

Ze

Pion Polarizabilities

 $\chi PT \quad \alpha_{\pi\pm} / 10^{-4} fm^3$ 2.7 one-loop 2.2 two-loop

 Table 1. The experimental data presently available for the pion polarizabilities.

Experiments	$\alpha_{\pi^{\pm}}/10^{-4}{\rm fm}^3$	$\alpha_{\pi^0}/10^{-4} {\rm fm}^3$
$\pi^- Z \to \gamma \pi^- Z$, Serpukhov (1983) [10]	$6.8 \pm 1.4 \pm 1.2$	
$\gamma p \to \gamma \pi^+ n$, Lebedev Phys. Inst. (1984) [11]	20 ± 12	
D. Babusci <i>et al.</i> (1992) [12]		
$\gamma \gamma \to \pi^+ \pi^-$: PLUTO (1984) [13]	$19.1 \pm 4.8 \pm 5.7$	
DM 1 (1986) [14]	17.2 ± 4.6	
DM 2 (1986) [15]	26.3 ± 7.4	
MAPK II (1990) [16]	2.2 ± 1.6	
$\gamma \gamma \to \pi^0 \pi^0$: Crystal Ball (1990) [17]		$\pm 0.69 \pm 0.11$
F. Donoghue, B. Holstein (1993) [18]		
$\gamma \gamma \to \pi^+ \pi^-$: MARK II	2.7	
$\gamma \gamma \to \pi^0 \pi^0$: Crystal Ball		-0.5
	$(\alpha + \beta)_{\pi^0} / 10^{-4} \text{fm}^3$	$(\alpha - \beta)_{\pi^0} / 10^{-4} \mathrm{fm}^3$
A. Kaloshin, V. Serebryakov (1994) [19]		
$\gamma \gamma \to \pi^0 \pi^0$: Crystal Ball	1.00 ± 0.05	-0.6 ± 1.8
L. Fil'kov, V. Kashevarov (1999) [6]		
$\gamma \gamma \to \pi^0 \pi^0$: Crystal Ball	0.98 ± 0.03	-1.6 ± 2.2

Mainz: $\gamma p \to \gamma \pi^+ n$ $(\alpha - \beta)_{\pi^+} = (11.6 \pm 1.5 \pm 3.0 \pm 0.5) \times 10^{-4} \, fm^3$

$$\gamma\gamma \to \pi^+\pi^-$$

Fig. 5. Comparison between Mark II [8] (diamonds) and CELLO [12] (squares) integrated cross-sections for $\gamma \gamma \rightarrow \pi^+ \pi^-$ in their common energy range

 $\gamma\gamma \to \pi^0\pi^0$

Fig. 6. Comparison between CB88 [7] (diamonds) and CB92 [13] (squares) integrated cross-sections for $\gamma\gamma \to \pi^0\pi^0$

FIG. 2. The data points shown are the $\gamma \gamma \rightarrow \pi^0 \pi^0$ cross section (with $|\cos \theta| < Z \equiv 0.8$) measured by the Crystal Ball Collaboration (Ref. [4]). The dashed curve is the prediction of one-loop chiral perturbation theory, while the solid curve is a full no-free-parameter dispersive calculation, as described in the text. Donoghue and Holstein, PRD48(1993)137. Measurements of polarizabilities of the neutral pion

Cross section for $\pi 0\pi 0$ photoproduction in the Coulomb field of the nucleus

$$\frac{d\sigma_{C}(\gamma A \to \pi \pi A)}{ds} = \frac{\alpha}{\pi} Z^{2} \log\left(\frac{\sqrt{s}}{2m_{\pi}}\right) \frac{1}{s} \sigma^{\gamma \gamma \to \pi \pi}(s)$$
where $s = m_{\pi \pi}^{2}$

Belkov Dillig and Lanyov, J. Phys. G23(1997) 823.

$$\sigma^{\gamma\gamma \to \pi\pi}(s) = \int \frac{d\sigma(\gamma\gamma \to \pi^0 \pi^0)}{d\Omega} d\Omega = \frac{\pi\alpha^2}{s} \sqrt{\frac{s - 4m_\pi^2}{s}} |f_{\pi^0}(s)|^2$$
$$f_{\pi^0}(s) = \frac{m_\pi}{4\alpha} (\overline{\alpha}_{\pi^0} - \overline{\beta}_{\pi^0}) s + O(s^2, sm_\pi^2)$$

Donoghue and Holstein, PRD48 (1993)197.

Hadrons under chiral symmetry

* Meson sector (a) σ in free space $\sigma \rightarrow 2\gamma$ (BR~10⁻⁵) (b) Partial restoration of χS in nuclei ++ softening of σ $\sigma \rightarrow 2\gamma$ $\sigma \rightarrow 2\pi^0$ (c) Study of Namb-Goldstone bosons ++ measurements of π^0 polarizabilities ++ transition form factors of η (d) $U_{A}(1)$ problem "Does χS restoration affect the U_A(1) problem?" $++\eta' \rightarrow 2\gamma$ in nuclei

Does chiral restoration affect $U_A(1)$ restoration?

Search for the effect in nuclei

The η^{\prime} meson is a good candidate.

 Particles decaying from η' have to be weak interacting ones in the final state.

Plan to measure	η' decay modes	branching
process $\eta' \rightarrow \gamma \gamma$ in nuclei		ratio
η' at rest	$η' \rightarrow \pi^+ \pi^- η$	44.3%
full width: Γ=0.2 MeV	$\eta' \rightarrow \rho^0 \gamma$	29.5%
$\implies p_{\eta'} \le 0.01 GeV / c$	$η' \rightarrow \pi^0 \pi^0 \eta$	20.9%
$\Leftrightarrow d \leq 10 fm$	•	
	η'→γγ	2.1%

yp total cross section

Opening angle of 2γ in $\eta' \rightarrow \gamma\gamma$ decay

Angular correlation of 2γ

Angular distribution of γ in $\eta' \rightarrow \gamma \gamma$ decay

Energy distribution of γ 's

VS

Senda

Angular distribution of $\boldsymbol{\eta}'$

Opening angle of 2γ in $\eta' \rightarrow \gamma\gamma$ decay

LNS Sendai GeV y Angular correlation of 2γ

 $p_{\eta'} \leq 0.5 GeV/c$

Angular distribution of γ 's

LNS Sendai GeV y Energy distribution of γ 's

NS

Sendai

energy distribution of gamma1

Angular distribution of outgoing nucleons

Momentum of outgoing nucleons

Schematic view of the LEPS2 facility

Uniqueness of new LEPS beam with 2 operational modes

High intensity mode potentiality of the LEPS facility A tagged γ beam with the highest intensity in the world small low energy component => small accidental coin. with untagged γ 's in the beam High energy mode potentiality of the LEPS facility A quasi-monochromatic γ beam at a 7 GeV energy region by means of XFEL induced CBS

vented thearen beam Physics Laborator

Milestone of SPring-8 X-FEL

New LEPS beam (high energy mode) High energy CBS provides a qusi-monochromatic γ beam

