Pentaquark hypernucleus and multi-quark states beyond 5

M. Yosoi, RCNP

- Motivation
- Theoretical predictions for the Θ^+ hypernucleus
- What is the suitable reaction ?
 - momentum transfer for several candidate reactions
 - 'magic momentum' in one baryon knockout reaction
- Experimental setup
- Summary

Motivation

- Another confirmation for the Θ^+ existence or at least existence of S=+1 nucleus
- O-N interaction: O-N cattering only studied through O-bound states
 → feedback to O+ properties and internal structure
- Medium modification of Θ⁺
 very low M*(Θ) : Θ KN, stable for the strong decay!
- Pentaquarks in neutron star
 If U(Θ⁺)=−100 MeV, 5% fraction of Θ in the core of compact star at ρ=4ρ₀ → limit of M_{nstar} is reduced

Need more reactivity in K^+ -Nucleus dynamics \rightarrow more Θ^+ in K^+A ?

- *t*ρ optical potential did not explain *K*-A scattering and σ_R data at low energy in spite of weak *K*-N interaction.
- if add density dependent term

 $t\rho \rightarrow t\rho(r) + B\overline{\rho}\rho(r)$

good fit is taken.

• assume this ΔV_{opt} term is due to

 $K^+ n N \rightarrow \Theta^+ N$

process, the absorption cross section is ~mb !

Gal, Friedman, PRL94,072301(2005)

FIG. 1. Data and calculations for K^+ reaction cross sections per nucleon (σ_R/A) at $p_{\text{lab}} = 488 \text{ MeV}/c$ are shown in the upper part. Calculated K^+ absorption cross sections per nucleon (σ_{abs}/A) are shown in the lower part; see text.

9 January 2007

Schematic model by Miller

Miller, PRC70,022202(2004)

- Θ is treated as a nucleon vibration due to the coherent *qs̄* excitation (like giant dipole resonance)
 qs̄ :pseudoscalar, *L*=1 (positive parity of Θ)
 number of states: 3(color)x3(*L_z*)x2(*us̄* or *ds̄*)=18
- determine the V(interaction between $q\overline{s}$ and N) and μ (mass of $q\overline{s}$) to reproduce M_{Θ}
- In ΘN system, coherent cloud
 also interacts with another N via V
- \rightarrow Very large attractive ΘN potential $U(r) \sim -490 \text{MeV}$ at $\rho = \rho_0 !$

Selfenergy of Θ^+ associated with decay loops

H-C. Kim et al., J. Kor. Phys. Soc.46, 393(2005) Cabrera et al., PLB608, 231(2005)

- Selfenergy of Θ in nuclei is evaluated with decay channels
- Only with KN channel \rightarrow too weak to bind Θ
- Add $K\pi N$ channel
 - \rightarrow strong attractive potential

Assume Θ is $\frac{1}{2}$ +. SU(3) antidecouplet Couplings are chosen to reproduce N*(1710) $\rightarrow N\pi\pi$ and SU(3) symmetry

 U(r)= -60 ~ -120 MeV, width: Pauli blocking and binding → reduce KπN channel → broaden, but not large

Mean field approach

QMC model: Panda et al., PRC72,058201(2005) Ryu et al.,PRC72,045206 RMF model: Zhong et al., PRC71,015206;PRC72,065212 QMF model: Shen, Toki, PRC71,065208

- Baryons in nuclear medium interact through the scalar (σ) and vector meson (ω,ρ) fields
- Coupling constants in nuclear sector $(g_{\sigma}^{N}, g_{\omega}^{N}, g_{\rho}^{N})$ and m_{σ} are determined to produce nuclear saturation properties
- For Θ , assume $g_{\sigma}^{\Theta} = 4/3g_{\sigma}^{N}$, $g_{\omega}^{\Theta} = 4/3g_{\omega}^{N}$, $(g_{\rho}^{\Theta} = 0 \text{ if } \Theta(I=0))$ because σ , ω and ρ couple only to u and d quarks (for Λ , $g_{\sigma}^{\Lambda} = 2/3g_{\sigma}^{N}$, $g_{\omega}^{\Lambda} = 2/3g_{\omega}^{N}$)
- $U = U_{s} + U_{v} \sim g_{\sigma}^{\Theta} \sigma_{0} + g_{\omega}^{\Theta} \omega_{0}$

Mean field approach

- RMF: $U= -50 \sim -90$ MeV for the point-like Θ but -90 MeV \rightarrow -37.5 MeV for Θ as a $K\pi N$ bound state
- QMF: *U*= -50 MeV

9 January 2007

QCD sum rule of Θ^+ in nuclear matter

Navarra et al., PLB606,335(2005)

- Σ_s :positive and Σ_v :negative !
- But $U=\Sigma_s + \Sigma_{v:}$ is still negative :

U= -40~-90 MeV

strongly depends on the value of the gluon condensate

9 January 2007

Summary of the theoretical predictions for $\Theta^+(1/2^+)$

- Miller's schematic model: $U(\Theta^+) < -100 \text{ MeV}$
- Hadronic SU(3) approach: $U(\Theta^+) = -60 \sim -120 \text{ MeV}$ (selfenergy associated with *KN* and *K* π *N* decays)
- Mean field theory RMF model: U(Θ⁺)= -37.5~ -90 MeV QMF model: U(Θ⁺)~ -50 MeV
- QCD sum rule: U(Θ⁺)= -40~ -90 MeV

All give sufficiently large attractive potentials to bind Θ^+ in nucleus, but what is the bridge between different models ?

What is the suitable reaction for producing Θ⁺ hypernucleus ?

- Elementary one-nucleon or two-nucleon process can produce Θ⁺ with reasonable cross sections
- Two-body reaction process is preferable to the missing mass spectroscopy
- Momentum difference between the produced $\Theta^{\scriptscriptstyle +}$ and the recoil nucleus should be small
 - \rightarrow small momentum transfer q in Lab system
- Small background (BG) process or some BG reduction methods should exist :
 - \rightarrow coincidence with backward decay products

Momentum transfer in (K^+, π^+) reaction

 $(\Theta^+ \text{ has still not been found in } p(K^+, \pi^+)X)$

9 January 2007

LEPS2-WS@RCNP

11

Calculated spectra of ${}^{12}C(K^+,\pi^+){}^{11}B_{\Theta}$ reaction

Nagahiro et al., PLB620,125(2005)

9 January 2007

Momentum transfer in (γ, K^+) reaction

(Θ^+ has been found in 'n'(γ, K^+)X at LEPS)

9 January 2007

Momentum transfer in $(\gamma, \Lambda(1116))$ reaction

 $(\Theta^+ \text{ has still not been found in } d(\gamma, \Lambda)X \quad (\Lambda \rightarrow p\pi^-))$

Momentum transfer in $(\gamma, \Lambda^*(1520))$ reaction

 $(\Theta^+ \text{ has been found in } d(\gamma, \Lambda^*)X \text{ at LEPS} (\Lambda^* \rightarrow pK^-))$

9 January 2007

Momentum transfer in (K⁺, p) reaction

 $(\Theta^+$ has not been searched in $d(K^+, p)X)$

9 January 2007

Comment on $\gamma d \rightarrow \Theta^+ \Lambda^* (1520)$

if K^+ : on shell $(m_K^2 = \varepsilon_K^2 - \vec{p}_K^2)$ and Θ is produced only at the formation energy $((\varepsilon_n + \varepsilon_K)^2 - (\vec{p}_n + \vec{p}_K)^2 = M_{\Theta}^2)$ \Rightarrow calculate p_n dependence of the Θ^+ production rate

9 January 2007

Multi-quark state beyond 5 -- 8 quark dibaryon candidate --

- If a Θ⁺N bound state is found, it could be a candidate of exotic 8 quark state
- e.g.) ${}^{3}\text{He}(\gamma,\Lambda^{*}){}^{2}\text{H}_{\Theta}$ or ${}^{3}\text{He}(\gamma,\Sigma^{+}){}^{2}[n\Theta]$

Detector setup

- Good missing mass resolution and acceptance for forward going $\Lambda(\rightarrow p\pi^{-}), \Lambda^{*}(\rightarrow pK^{-})$ [if possible, $\Sigma^{+}(\rightarrow p\pi^{0}, n\pi^{+})$]
- Coincidence measurement with decay products, especially, at backward angles, which have relatively low momentum

9 January 2007

Summary

- Pentaquark hypernucleus is interesting and important for another confirmation of Θ⁺ and the study of the ΘN interaction.
- Several theoretical model calculations predict the existence of bound Θ^+ states, although the mutual relations between different models are not clear.
- Momentum transfer for the Θ⁺ production process is small in one baryon knockout reactions at forward angles like (γ,Λ), (γ,Λ*), and (K⁺,p).
- Suggest an idea of adding a small solenoid to detect the backward decay products in addition to the E949 detector. (any detailed study has not been done yet.)