Comments on Physics at New LEPS

K.Imai (Kyoto)

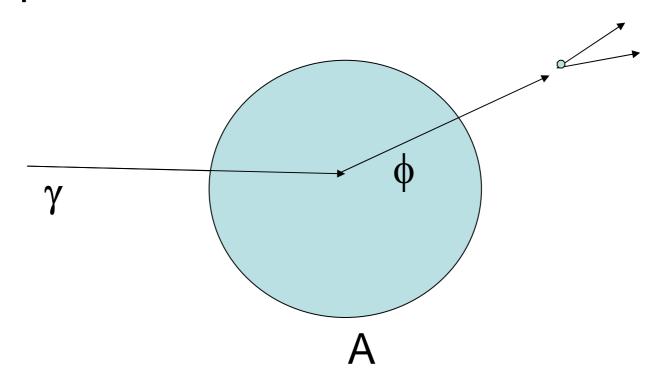
A unique new device can always lead us to a discovery, since the nature is richer than human being can imagine. LEPS new beam line should be such a unique (in the world) device.

highest intensity and/or highest energy
 Compton γ beam
 keyward; nuclear target

Higher Intensity

• $10^6 -> 10^7 \sim 10^8 /\text{sec}$

High precision (statistics)


Physics limited by statistics get new opportunity of discovery!

New physics

Physics which is only possible with high intensity!

φN cross section from mean free path in nuclear matter

A-dependence -> cross section

A-dependence of ϕ photo-production

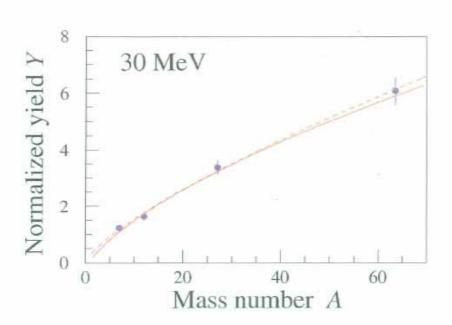
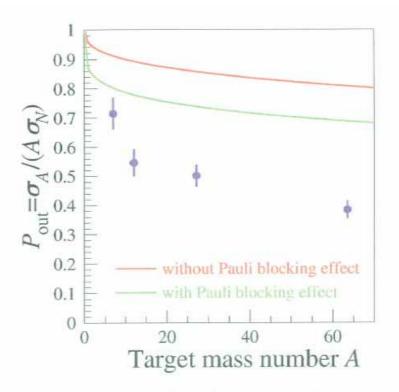



Figure 4.15: A-dependence with the 30 MeV missing energy cut. The solid and dashed curves show the fitting results with the functions $Y(A) = Y_N A_{\text{eff}}(A)$ ($\sigma_{\phi N} = 29.7^{+11.7}_{-8.2}$ mb) and $Y(A) = Y_0 A^{\alpha}$ ($\alpha = 0.742 \pm 0.057$), respectively. The fitting results are summarized in Table 4.4.

$\sigma(\phi n) \sim 30 \text{mb} !!$

T.Ishikawa et al., Phys. Lett. B608 (2005) 215.

T.Ishikawa, PhD thesis

1.2 1.0 0.8 0.6 0.4 without Pauli blocking effect 0.2 20 40 60 Target mass number A

Figure 4.18: Comparison of P_{out} in the kinematical region of the incoherent process. The red and green curves show the theoretical calculations as same as Figure 4.16. The overall normalization error (18%) is not included in this figure.

Figure 4.19: Comparison of $P_{\text{out}}/P_{\text{out}}(\text{Li})$ for the yields in the kinematical region of the incoherent process. The red and green curves show the same theoretical calculations as Figure 4.17.

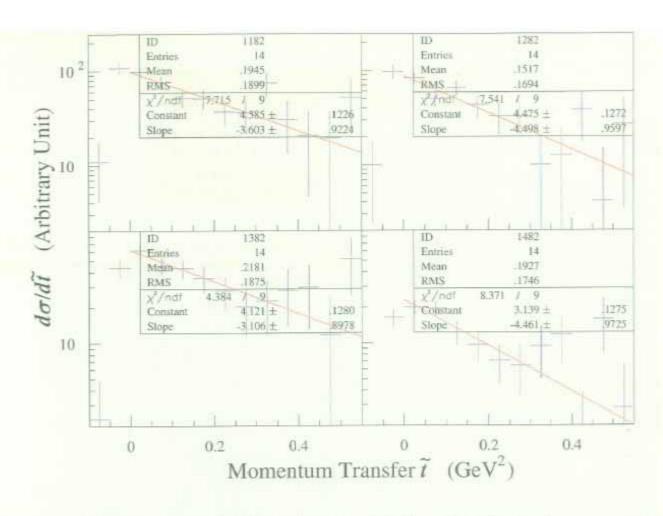
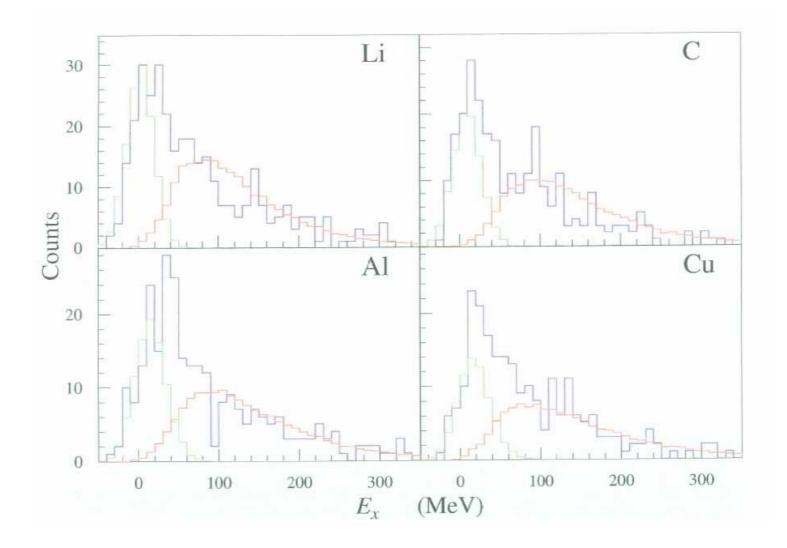



Figure 3.31: Acceptance corrected yield as a function of \bar{t} . The yield is fitted with an exponential function as shown in the red lines.

Hypernuclei with γ-beam

- (K-, π -), (π +,K+) reaction n-> Λ
- (e,e'K+) reaction (JLab) p->Λ
 high intensity, high resolution
- $(\gamma,K+)$ reaction p-> Λ decay particle measurement nonmesic weak decay $\Delta I=1/2$ rule?

->
$${}^{4}H_{\Lambda}$$
 $\gamma + {}^{4}He$ -> $K^{+} + {}^{4}H_{\Lambda}$

Decay widths of $^4_{\Lambda}{ m He}$			Decay widths of ${}^4_{\Lambda}{\rm H}$	
Decay	Results	$\mathrm{Zeps^{10}}$	Decay	Results
$\Gamma_{total}/\Gamma_{\Lambda}$	$1.03^{+0.12}_{-0.10}$	1.07 ± 0.11	$\Gamma_{total}/\Gamma_{\Lambda}$	$1.36^{+0.21}_{-0.15}$
$\Gamma_{\pi^0}/\Gamma_{\Lambda}$	$0.53 {\pm} 0.07$	$0.60 {\pm} 0.08$		
$\Gamma_{\pi^-}/\Gamma_{\Lambda}$	$0.33 {\pm} 0.05$	$0.26 {\pm} 0.03$	$\Gamma_{\pi^-}/\Gamma_{\Lambda}$	$1.00^{+0.18}_{-0.15}$ *
$\Gamma_{\pi^0}/\Gamma_{\pi^-}$	$1.59 {\pm} 0.20$	2.3 ± 0.4	$\Gamma_{\pi^{-4}\mathrm{He}}/\Gamma_{\Lambda}$	$0.69^{+0.12}_{-0.10}$ *
Γ_p/Γ_Λ	$0.16 {\pm} 0.02$	$0.16 {\pm} 0.02$	$\Gamma_{\pi^{-4}\mathrm{He}}/\Gamma_{\pi^{-}}$	0.69 ± 0.02 *
Γ_n/Γ_Λ	$0.01^{+0.04}_{-0.01}$	$0.04 {\pm} 0.02$		
$\Gamma_{nm}/\Gamma_{\Lambda}$	$0.17 {\pm} 0.05$	0.20 ± 0.03	$\Gamma_{nm}/\Gamma_{\Lambda}$	$0.17\pm0.11^*$
$\Gamma_{nm}/\Gamma_{\pi^-}$	$0.51 {\pm} 0.16$	$0.77 {\pm} 0.15$		
Γ_n/Γ_p	$0.06^{+0.28}_{-0.06}$	$0.25^{+0.05}_{-0.13}$		

From Outa

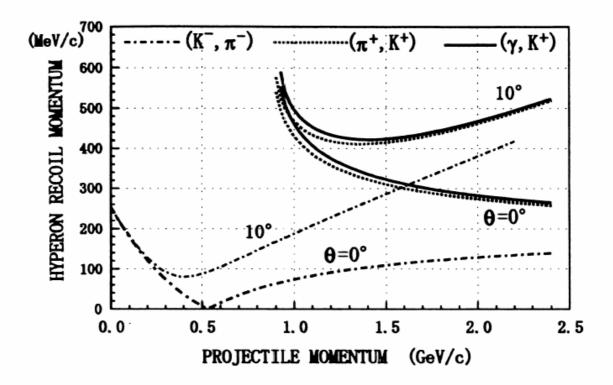
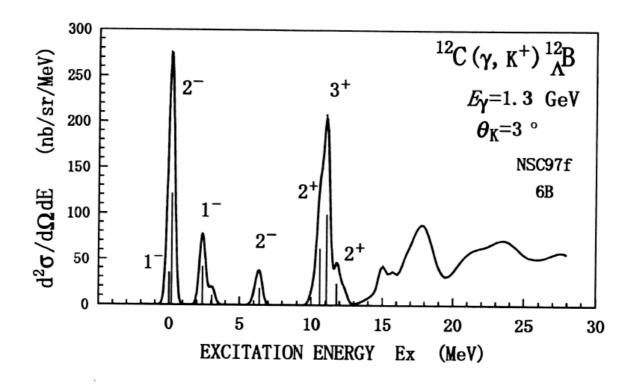
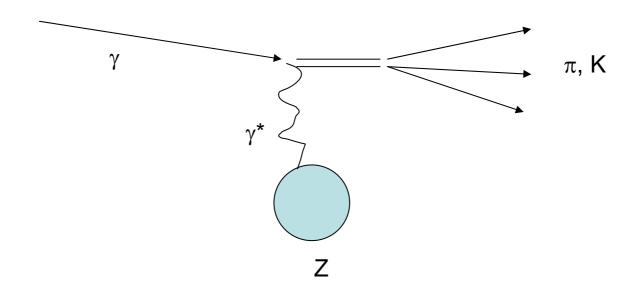


Figure 1. Hyperon recoil momentum q_{Λ} as a function of projectile lab momentum. Two curves for each reaction correspond to the meson lab scattering angles: $\theta_{\text{lab}} = 0$ and 10 deg.

2.5 $d\sigma/d\Omega_{lab}$ (µb/sr) Motoba et al., 1.5 $\gamma + p \longrightarrow \Lambda + K^{+}$ 0.4 $d\sigma/d\Omega_{c.m.}~(\mu b/sr)$ 0.2 1.8 2 1.2 1.4 1.6 E_γ (GeV)

Figure 2. Experimental and theoretical differential cross sections for the $\gamma p \to \Lambda K^+$ reaction are plotted as a function of the photon lab energy at a fixed kaon scattering angle. See text for the models denoted as AW2, AS1, C4, and SLA. The data are from Refs. ⁸ (solid circles), ⁹ (empty circles), and ¹⁰ (triangles).




Figure 7. Calculated spectrum for the $^{12}{\rm C}(\gamma,K^+)^{12}_{\Lambda}{\rm B}$ reaction at $E_{\gamma}=1.3$ GeV and $\theta^{Lab}_{K}=3$ deg.

Yield?

- Beam; 5x10⁷, He target; 2x10²³
- Production cross section; 100nb/sr 10⁻³¹
- Spectrometer acceptance; 100mstr
- Yield; $0.1 \,^{4}\text{H}_{\Lambda}/\text{sec} \rightarrow 4x10^{4}/100\text{hours}$

Higher Energy

- 5~6 GeV high quality photon beam
- Photo-hadron production from nuclei
- Primakoff process

Exotic (structure) hadron search by mean-free path measurements

- Higher mass exotics for higher energy γ beam such as Λ(1405) at LEPS TPC
- A-deppendence of photo-hadron production cross section
 - -> mean free path of hadrons
 - -> size of hadrons
 - -> 2quark? 4quark? 5quark? 6quark? hybrid? glue ball?
- → 4π general detector for invariant mass measurements

Primakoff process

- Life time measurement of π^0 and η
- Mesons ($J^{\pi}=0^{+-}, 2^{+}$) -> $\gamma\gamma$ coupling
 - -> Structure of mesons

$$\pi$$
, η , σ , a_0 , f_0 , glue ball

Cross section increases as γ energy increases

 \rightarrow Forward spectrometer (charged and γ)