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Abstract

The photo-production of φ mesons from Li, C, Al, and Cu nuclei has been measured at the
SPring-8/LEPS facility. The high energy photon beam with Eγ = 1.5—2.4 GeV has been
produced by laser induced backward Compton scattering from 8 GeV electrons in the storage
ring, and irradiated the nuclear targets. Charged particles produced at the targets have been
detected at forward angles with the LEPS spectrometer. The φ meson peaks are clearly
observed in the K+K− invariant mass distributions for all the targets. The measured mass
and width for each target in the momentum range from 1.0 to 2.2 GeV are consistent with
those of the free φ meson. The slope parameter b obtained by fitting the differential cross
section for each nuclear target with a function dσ/dt = C exp(−bt) is consistent with that
for the proton target, implying that incoherent φ photo-production is dominant. However,
coherent φ photo-production is also slightly observed in the missing mass mX distribution for
the reaction γA→ K+K−X even at low energies although it is suppressed near the threshold
due to the heavy mass of the φ meson. After subtracting the coherent contribution, the cross
sections give a relation σA ∝ A0.72±0.07. The total cross section of the φ-nucleon interaction
σφN is estimated as 35

+17
−11 mb using the A-dependence of the φ photo-production yield with

a Glauber-type multiple scattering theory. This value is much larger than σφN in free space,
suggesting that the φ properties might change in the nuclear medium.
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Chapter 1

Introduction

1.1 Physics objectives

The modification of the vector mesons in nuclear matter (a decrease of the mass, a broadening of the
width, and so on) is a subject of great interest in hadron physics. The mass of the vector mesons is
predicted to decrease in nuclear matter [1, 2, 3]. The properties (mass and width) of the ρmeson in the
nuclear medium have been studied of intense both theoretically and experimentally. The experimental

Figure 1.1: e+e− invariant mass spectrum for
the Pb+Au collision given by Ref. [6]. The mass
spectrum is reproduced by the known processes
except for the mass region below the ω/ρ peak.

Figure 1.2: e+e− invariant mass spectrum for
the p+Cu reaction given by Ref. [13]. The mass
spectrum is reproduced by the known processes
except for the mass region below the ω peak.

data on dilepton production in A-A collisions at the CERN-SPS seem to indicate lowering the mass
and broadening the width of the ρ meson in the nuclear medium [4, 5, 6]. Figure 1.1 shows the e+e−

invariant mass distributions for the Pb+Au collision given by Ref. [6]. The e+e− invariant mass
distributions for the p+Be, p+Au collisions are reproduced by the known processes to the dilepton
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2 CHAPTER 1. INTRODUCTION

pairs such as the π0/η/η0 → e+e−γ, ρ/ω/φ → e+e−, and ω → e+e−π0 reactions. But those for the
S+Au, and Pb+Au collisions are not reproduced by these reactions in the mass region below the ω/ρ
peak. The ρ contribution is only a fraction of the total mass spectrum, and the difficulty exists in
the treatment of the background. An enhancement in the mass region below the ω/ρ peak has been
also observed in the p-A reaction at the normal nuclear density [7, 8, 9, 10, 11, 12, 13]. Figure 1.2
shows the e+e− invariant mass distribution for the p+A reaction at the KEK-PS given by Ref. [13].
The spectra are not reproduced by the known processes such as the η → e+e−γ, ρ/ω/φ→ e+e−, and
ω → e+e−π0 reactions, and the particle mis-identification of π± as e± (the process π0 → e+e−γ is
out of the detector acceptance). The same difficulty exists in the treatment of the background.

The φ meson is not concealed by other resonances by contrast in the dilepton or KK invariant
mass spectra. In this regard, many theoretical calculations have been made for the φ meson, and
a broadening of the width and/or a lowering of the mass are also predicted at the normal nuclear
density because of partial restoration of chiral symmetry [14, 16] or the meson-nucleon interaction
in the nuclear medium [15, 17, 18, 19, 20, 22, 21, 23]. Figures 1.3 and 1.4 show the examples of the
theoretical calculations for the change of the φ properties which predict a decrease of the mass and
a broadening of the width in the nuclear medium. Figure 1.3 shows an expected mass shift of the
φ meson as a function of baryon density where the calculations based on the in-medium QCD sum
rule have been made by Hatsuda et al. [14]. Figure 1.4 shows an expected broadening of the width
where the calculations based on the φ self-energy with the meson-nucleon interaction in the nuclear
medium have been made by Oset et al. [20].

Figure 1.3: Decrease of the mass predicted by
Hatsuda et al. given in the Ref. [14]. An ex-
pected mass shift of the φ meson as a function
of baryon density are shown where calculations
are based on the in-medium QCD sum rule. The
value of the mass shift depends on the strange
contents in the nucleon Y = 2hss̄iN/(huūiN +
hdd̄iN ).

Figure 1.4: Broadening of the width predicted
by Oset et al. given in the Ref. [20]. The
mass spectra of the φ meson in the nuclear
medium are shown where calculations are based
on the meson-nucleon interaction in the nuclear
medium.

The mass shift of the φ meson has been looked for experimentally in the p-A reaction at the
normal nuclear density [7, 8, 9, 10, 11, 12, 13], and also in high energy heavy ion collisions [24, 25].
However, no clear evidence has been observed so far. Figure 1.5 shows the K+K− invariant mass
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Figure 1.5: K+K− invariant mass spectrum for
the Si+Au collisions given by Ref. [25]. The mass
and width of the φ meson is consistent with those
of the φ meson in free space.

Figure 1.6: e+e− invariant mass spectrum for the
p+Cu reaction given by Ref. [13]. The mass spec-
trum is obtained by subtracting the combinato-
rial background. The excess in the mass region
below the φ is not observed.

spectrum in the Si+Au collision at BNL-AGS. The measured mass and width are consistent with
those of the φ meson in free space. Most of produced φ mesons decay outside the nucleus due to
the small width of the φ resonance. Even if all the φ mesons decay inside the nucleus, the KK
invariant mass spectrum might be strongly distorted by the KN and the KN interactions [26]. It
seems difficult to observe the change of the φ properties through the KK invariant mass distribution.
Figure 1.6 shows the e+e− invariant mass spectrum in the p-A reaction at the KEK-PS. The excess
in the mass region below the φ peak is not observed. The difficulty exists in the treatment of the
combinatorial background. Recently, it has been pointed out that the change of the φ width can be
studied by φ photo-production from nuclei [27]. The decrease of photo-produced φ meson flux in the
nucleus is related to the φ width in the nuclear medium.

The total φ-nucleon (N) cross section σφN should be small since the φ meson consists of almost
pure ss and ss is basically absent in a nucleon. If σφN in free space is small and σφN in the nuclear
medium is the same as that in free space, the incoherent φ photo-production cross section from a
nucleus σincA is approximately proportional to the target mass number A since almost all the produced
φ mesons are expected to go outside the nucleus without interacting with a nucleon. If σφN becomes
larger in the nuclear medium, some fraction of the photo-produced φ mesons would interact with a
nucleon in the nucleus and disappear via inelastic reactions. In this case, the A-dependence sizeably
deviates from σA ∝ A1. Figure 1.7 illustrates the deviation of the A-dependence.

The σφN in free space is well determined to be 7.7—8.7 mb from the φ photo-production cross
section on the proton dσ/dt|t=0 at Eγ = 4.6—6.7 GeV, where the energy dependence of the γ-φ
coupling is assumed to be constant on the basis of the vector meson dominance model (VDM) [28].
A quark model [29] gives a prediction of 13.0 ± 1.5 mb for σφN [28]. This value is deduced from the
total π±p and K+p cross sections obtained at the high energy limit. The obtained and predicted
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Figure 1.7: Deviation of the A-dependence predicted by the σφN in free space. In this figure, the σφN
in free space is assumed to be 0, and the A-dependence is predicted to be σA ∝ A1. If σφN becomes
larger in the nuclear medium, some photo-produced φ mesons would be absorbed in the nucleus, and
the A-dependence sizeably deviates from σA ∝ A1.

values of σφN in free space are much smaller than other meson-nucleon total cross sections σωN , σρN ,
and σηN (∼ 30 mb) [30, 31, 32].

The φ-N total cross section σφN , the real-imaginary ratio of φ-N scattering amplitude αφN , and φ-
N coupling constant fφN are the fundamental parameters to describe φ-nucleon scattering. The photo-
production from nuclei is the best way to determine these parameters because a nucleus is transparent
to the photon probe, and a multi-step process can be negligible. Thus, many measurements of the
meson photo-production cross sections from various nuclei have been performed to deduce the total
cross section of the mesons in interaction with a nucleon. Figure 1.8 shows the summary of the total

Figure 1.8: Total cross section of vector mesons in interaction with a nucleon. The closed squares
show the data determined from the incoherent process, and the closed circles show the data from
the coherent one. Only one experiment is reported for the φ meson. The horizontal bars show the
incident γ energy ranges.

cross sections for vector mesons: σρN [33, 34, 35, 36, 37, 38, 39, 40], σωN [41, 42, 43, 44], and σφN [45].
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The σωN at Eγ = 3.9 GeV [43] has been determined from the incoherent process, and the others have
been determined from the coherent one.

As for the φ mesons, only one measurement of φ photo-production from nuclei at high energies
(6.4—9.0 GeV) has been performed to determine the fundamental parameters mentioned above [45].
Since coherent φ photo-production is dominant at Eγ = 6.4—9.0 GeV at forward angles, an optical
model of a Glauber-type multiple scattering theory for coherent production has been used [46, 47]. To
deduce σφN from the A-dependence of the production cross section, the model for coherent production
requires three parameters: σφN , αφN , and fφN . A unique solution for σφN can not be determined
due to the fact that the number of parameters is large. However, at low energies near the φ photo-
production threshold, coherent production is expected to be suppressed as compared with incoherent
production since the momentum transfer |t| is larger even at forward angles where coherent production
is expected to be dominantly observed. In the optical model for incoherent production, only one
parameter σφN is related with the A-dependence. Thus, φ-nucleon total cross section σφN can be
determined with less ambiguities.

1.2 Glauber-type multiple scattering theory

At GeV energies, particle production from nuclei is very useful for obtaining the total cross section of
unstable particles and a nucleon. They are produced on one nucleon in the nucleus, and then interact
with others before decaying. Thus, the measurements of the production cross section in a wide range
of the target mass number A is advantageous to extract the total cross section. The A-dependence
of the production cross section is discussed [46, 48, 47] with the following assumptions:

1. the spin and isospin independent interactions,

2. single-step process

1 +N → 2 +N (1.1)

is dominant where 1 and 2 refer to the incident and produced particles, respectively, and

3. the two body process (1.1) is a small part of the total cross section for the particle 1 in interaction
with a nucleon.

The production cross section of the incoherent process at forward angles dσinc/dt is described as

dσinc

dt
=
dσN
dt
Aeff(A,σ1N ,σ2N ) +

Z
dσN (~q0)
dΩ0

G(~q, ~q0;A, σ1N , σ2N )d2q0 + · · · , (1.2)

where Aeff stands for an effective nucleon number, σN denotes the production cross section on a nu-
cleon, and G(~q, ~q0;A, σ1N ,σ2N ) is a correction due to single scattering before and after the production.
The Aeff is defined as

Aeff(A,σ1N , σ2N ) =
1

σ2N − σ1N
Z n

exp (−σ1NT (b))− exp (−σ2NT (b))
o
d2b, (1.3)

where σ1N and σ2N denote the total cross sections of the incident and produced particles in interaction
with a nucleon, respectively, and T (b) is a thickness function:

T (b) = A

Z +∞

−∞
ρ(b, z)dz, (1.4)
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which is estimated assuming the particle 2 goes at an angle of 0◦ to the momentum direction of the
particle 1. The G(~q, ~q0;A, σ1N ,σ2N ) is described as

G(~q, ~q0;A,σ1N ,σ2N ) =
1

σ2N − σ1N
1

k2

Z
d2b

·
1

σ2N − σ1N
n
exp (−σ1NT (b))− exp (−σ2NT (b))

o³
|f11(~q − ~q0)|2 − |f22(~q − ~q0)|2

´
+T (b)

n
exp (−σ1NT (b)) |f11(~q − ~q0)|2 − exp (−σ2NT (b)) |f22(~q − ~q0)|2

o¸
, (1.5)

where the fij is the two body scattering or production amplitudes, The fii denotes the amplitude for
scattering of the particle i on a nucleon, and fij (i 6= j) stands for producing j with i incident on a
nucleon. The derivation of the incoherent production cross section is reviewed in detail in Appendix A.
Assuming that this higher order correction is small, the incoherent production cross section becomes

dσinc

dt
=
dσN
dt
Aeff(A,σ1N ,σ2N ). (1.6)

The correction is small for φ photo-production since the direct coupling φNN lacks due to the Okubo-
Zweig-Iizuka (OZI) rule. The φ photo-production cross section is proportional to Aeff .

The effective nucleon number Aeff plays an important role describing the production cross section.
In photo-production, the total cross section of the incident photon in interaction with a nucleon (σ1N )
is very small (140 µb at Eγ =1.5—2.4 GeV [49]), thus Aeff can be described as a function of the target
mass number A and the total cross section of the produced particle with a nucleon σ2N . Figure 1.9

Figure 1.9: Effective nucleon number Aeff as a function of A. It is estimated for various σ2N values.
The left panel shows Aeff for σ1N = 0 mb, and the right one shows that for σ1N = 1 mb.

shows Aeff for some total cross section values σ2N . Assuming the same dσN/dt for the proton and
the neutron, σφN can be derived from the A-dependence of the particle production cross section. The
absolute values of the production cross sections are not necessary.
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1.3 Presented Data

In this paper, φ photo-production from Li, C, Al, and Cu at Eγ = 1.5—2.4 GeV is reported. This
experiment was carried out at SPring-8/LEPS (C01BL33LEP-6002N, Spokesperson: T. Ishikawa).
Before and after this experiment, φ photo-production on the proton at Eγ = 1.5—2.4 GeV was mea-
sured by the LEPS collaboration (C01BL33LEP-6001N, Spokesperson: T. Nakano), and those data
are also presented for comparison.

In Chapter 2, the SPring/LEPS facility, detector system, and electronics are described. The
procedure of data reduction and event selection, and the mass and width of the observed φ mesons
are presented in Chapter 3. In Chapter 4, φ-N total cross section is estimated from the target mass
number A dependence, and the A-dependence is compared with the theoretical calculations. Finally,
the work is concluded in Chapter 5.



Chapter 2

Experiment

The differential cross sections of photo-production from nuclei were measured at the SPring-8/LEPS
facility. The linearly polarized photons were produced by laser induced backward Compton scattering
from 8 GeV electrons in the storage ring. An ultra violet Ar laser was used to generate a photon
beam with the maximum energy of 2.4 GeV. The recoil electrons were momentum analyzed by a
bending magnet in the storage ring, and were detected by a tagging counter placed at the exit of
the bending magnet. Photons with the energy ranging from 1.5 to 2.9 GeV were tagged. Charged
particles produced by photo-reactions were momentum analyzed with the LEPS spectrometer system.
The SPring-8/LEPS facility and the LEPS spectrometer are described in this chapter.

2.1 Laser-electron photon beam

2.1.1 SPring-8 facility

The Super-Photon Ring—8 GeV (SPring-8) [50, 51] is a third generation synchrotron orbital radi-
ation (SOR) facility, which is optimized to produce a high brightness SOR light source by using
insertion devices such as wigglers and undulators. The facility is composed of an injector linear ac-
celerator, a booster synchrotron, and a low emittance and high brightness storage ring. Electrons are

Figure 2.1: Layout of the SPring-8 facility. The SPring-8 facility is composed of a linear accelerator,
a booster synchrotron, and a storage ring with 62 photon beam lines.

8
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generated at a thermionic gun, and are accelerated to an energy of 1 GeV in the injector linear accel-
erator with a length of 140 m, which consists of 26 accelerator columns. The radio frequency (RF)
of the linear accelerator is 2856.2403 MHz. The 1 GeV electrons are transported to the booster
synchrotron with a circumference of 396.12 m, and are accelerated to 8 GeV. The RF frequency and
harmonic number of the synchrotron are 508.58 MHz, and 672, respectively. The 8 GeV electrons
are injected to the storage ring with a circumference of 1435.95 m. The RF frequency and harmonic
number of the storage ring are 508.58 MHz, and 2436, respectively. Figure 2.1 shows the layout of
the SPring-8 facility.

The 8 GeV electrons circulate in the storage ring 2.0878×105 times a second. The maximum
electron circulating current is 100 mA. Electrons are filled in some of the total 2436 bunches with
various filling patterns, where the time interval of the successive bunches is 1.966 nsec. A lifetime
depends on the filling pattern, and was about 100 hours in the experiment. The natural emittance is
6.89π nm rad, and the averaged widths are 75 µm and 25 µm in the horizontal and vertical directions,
respectively.

The stored electron beam is used to produce photon beams, and there exist 62 beam lines. A laser-
electron photon facility has been constructed in the BL33LEP beamline, which is called LEPS (laser-
electron photon facilty at SPring-8).

2.1.2 LEPS facility

The LEPS facility [52, 54, 55] has been constructed for quark nuclear physics by Research Center for
Nuclear Physics (RCNP), Osaka University, by Japan Synchrotron Radiation Institute (JASRI), and
by Japan Atomic Energy Research Institute (JAERI). A multi-GeV photon beam is produced by the
backward Compton scattering of laser photons from circulating 8 GeV electrons in the storage ring.
The LEPS facility consists of an interaction region of laser photons and circulating electrons, a tagging
system, a laser hutch, and an experimental hutch. Laser photons are injected to a 7.8 m long straight

Figure 2.2: Schematic view of the LEPS facility. The LEPS facility consists of an interaction region of
laser photons and circulating electrons, a laser hutch, a tagging system, and an experimental hutch.

section between two bending magnets BM1 and BM2 in the storage ring. This straight section is a
laser photon-circulating electron interaction region, and some laser photons gain multi-GeV momenta
at a direction of electrons via the backward Compton scattering (BCS). The laser injection system
is optimized in the laser hutch to minimize the laser spot size in the interaction region to obtain
high intensity BCS photon beam. The recoil electrons are momentum analyzed by BM2, and were
detected by the tagging system placed at the exit of BM2. The BCS photon beam is provided to the
experimental hutch, and irradiates targets. Experiments with the BCS photon beam have started in
2000.
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2.1.3 Backward Compton scattering

Compton scattering of a photon by an electron is a simple process in quantum-electro dynam-
ics (QED). Polarized high energy photons are produced by the collision of polarized laser photons
with high energy electrons. The energies of produced photons are the same order as those of the
electrons. This process is called as backward Compton scattering (BCS).

To discuss the BCS photons quantitatively [56], the kinematics is described as follows. A laser
photon with an energy k1 and an electron with an energy Ee approach one another, where Ee is much
larger than k1. The photon strikes the electron with an angle of θ1 ' 180◦, and is scattered at an
angle θ2. Figure 2.3 shows the kinematical values of the BCS process. The energy of the scattered

Figure 2.3: Kinematical values of the BCS process. A laser photon with an energy of k1 strikes an
electron with a energy of Ee at an angle θ1, the scattered BCS photon at an angle of θ2 has an energy
of Eγ , and the recoil electron has an energy of E

0
e.

BCS photon Eγ is

Eγ = k1
1− β cos θ1

1− β cos θ2 + k1(1− cos θ)
Ee

, (2.1)

where β is an initial velocity of the electron in unit of the speed of the light, and θ = θ1 − θ2. When
γ = Ee/me À 1, β ' 1, θ1 ' 180◦, and θ2 ¿ 1 are assumed, Eq. (2.1) can be written as

Eγ =
4E2ek1

m2
e + 4Eek1 + θ22γ

2m2
e

, (2.2)

where me is the electron mass. The maximum energy of the BCS photon is obtained at θ2 = 0
◦. The

differential cross section of the BCS process is described [56] as

dσ

dEγ
=
2πr2ea

Emaxγ

(χ+ 1 + cos2 α), (2.3)

where re is the classical electron radius, and

a =
m2
e

m2
e + 4Eek1

, (2.4)

χ =
ρ2(1− a)2
1− ρ(1− a) , (2.5)

cosα =
1− ρ(1 + a)
1− ρ(1− a) , (2.6)

ρ =
Eγ
Emaxγ

. (2.7)
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The polarized BCS photons are produced by using polarized laser photons. Most of the laser polar-
ization is transferred to the BCS photons. The linear, and circular polarizations of BCS photons PLγ ,

PCγ are described [56] as

PLγ = P
L
laser

(1− cosα)2
2(χ+ 1 + cos2 α)

, (2.8)

PCγ = PClaser
(2 + χ) cosα

(χ+ 1 + cos2 α)
, (2.9)

where PLlaser, P
C
laser are the linear, and circular polarizations of laser photons, respectively.

Figure 2.4: Energy of the BCS photon. The left panel shows the energy of the BCS photon as a
function of scattering angle. The right panel shows the differential cross section of the BCS process.

Figure 2.5: Polarization of the BCS photon. The left and right panels show the linear and circular
polarization as a function of the BCS photon energy, respectively.

Figure 2.4 shows the energy of the BCS photon as a function of scattering angle θ2, the differential
cross section dσ/dEγ for a laser with a wave length of 351 nm. Here, the circulating electron energy Ee
is 7.975± 0.003 GeV, the electron mass me is 0.51099906 MeV, and the classical electron radius re is
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2.818 fm. The maximum energy of the BCS photon Emaxγ is 2.4 GeV. The energy distribution for BCS
photons is a quasi-flat, and low energy photons are reduced as compared with the Bremsstrahlung
photons, of which energy distribution has a 1/Eγ . BCS photons with an energy larger than 1.5 GeV are
produced inside a narrow cone (< 0.06 mrad). Figure 2.5 shows the linear, and circular polarizations
PLγ , P

C
γ as a function of Eγ with a 100% linearly, and circularly polarized laser, respectively. The

maximum degree of polarizations are obtained at Emaxγ = 2.4 GeV, and are 94%, 100% for linear,
circular polarization, respectively.

2.1.4 Laser injection system

An ultra violet Ar laser is used to get laser photons. The laser oscillates with a multi-line mode,
and the wave length ranges from 333 to 364 nm. Figure 2.6 shows the wave length spectrum of the

Figure 2.6: Wave length of the Ar laser with a multi-line ultra violet mode. Sharp peaks of 351.1 nm
and 363.8 nm are observed.

laser measured by a monochrometer. Five peaks of 333.6, 334.5, and 335.8, 351.1, and 363.8 nm are
observed, and two peaks of 351.1, and 363.8 nm among them are very sharp. Typical output power
of the laser is about 8 W, which corresponds to the 1.42×1019 sec−1 since the energy of laser photons
with 351 nm is 3.53 eV.

The laser injecting system is composed of the Ar laser, a half wave (λ/2) plate, and four mirrors,
and a polarizer and a photo diode are used for the polarization measurement. Figure 2.7 shows the
schematic view of the laser injecting system. The direction of the laser polarity is controlled by a
half wave (λ/2) plate placed just after the laser exit. When a linearly polarized laser is injected on
a half wave plate with the polarization plane at an angle θ with respect to the fast axis (optic axis),
the polarization plane of the outgoing laser rotates at an angle 2θ after passing through the plate.
The fast axis is set at 0◦ (45◦) to get the vertically (horizontally) polarized laser photons since the
Ar laser is vertically polarized.

The laser photons travels 40 m before it collides with a circulating electron. A beam expander
telescope reduces the divergence angle of the laser beam, and the diameter in the interaction region
is minimized to achieve maximum luminosity. The beam expander is placed after the half wave plate.

Four mirrors are used to transport the laser photons to the interaction region in the storage
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Figure 2.7: Schematic view of the laser operation system. The Ar laser, the λ/2 plate, and the four
mirrors are used for injecting the laser photons to the storage ring. The polarizer and the photo-diode
are used for the polarization measurement.

ring. The first and second mirrors are fixed, and the direction and the position of the laser beam
are adjusted by the third and fourth mirrors. The first and second mirrors are made of aluminum
evaporated silicon, and the third and fourth mirrors are made of quarts. The transmission of the
laser photons to the laser beam end is about 40%. Since the reflectivity for the vertically polarized
laser photons is higher than that for the horizontally polarized ones, the intensity of the vertically
polarized BCS photons is higher than that of the horizontally polarized ones.

The polarization of the laser beam is measured at the laser beam end located downstream of
the interaction region. Polarization measurement system consists of a polarizer (glan-laser prism;
OptMax PGL8310) and a photo-diode (HAMAMATSU S1406−05). When the laser photons pass
through a polarizer, the electric field parallel to the transmission axis of the polarizer survives. Thus

Figure 2.8: Laser intensity with respect to the direction of the transmission axis φ0. The left and
right panels show the vertically and horizontally polarized laser photons.
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the intensity of the laser photons after the polarizer I is described as

I = I0 cos
2 φ, (2.10)

where φ is angle between the transmission axis and the direction of the incident laser polarity, and
I0 is the intensity of outgoing laser photons for φ = 0. The intensity of the outgoing laser photons
is measured by the photo-diode. Figure 2.8 shows the intensity distribution for the vertically and
horizontally polarized laser photons respect to the direction of the transmission axis φ0. The intensities
are proportional to cos2(φ0 − 90◦), and cos2(φ0 − 0◦) for vertically, and horizontally polarized laser
photons. The polarization and the direction of polarity φlaser is obtained by fitting these distributions
with a function described as

I = I0 cos
2(φ0 − φlaser), (2.11)

2.1.5 Tagging system

The BCS photon energy Eγ is described as

Eγ = Ee − E0e, (2.12)

where Ee is the circulating electron energy, and E
0
e is the recoil electron energy. The E

0
e is measured

by the tagging system installed at the exit of the bending magnet BM2. Since the momentum of the
recoil electron is lower than that of the circulating electrons, the recoil electron bends inward from
the normal circulating electron orbit in the storage ring. Therefore, a displacement of the position at
the exit of BM2 which the recoil electron passes through corresponds to E0e.

The tagging system is composed of two plastic scintillator hodoscopes and silicon strip detec-
tors (SSD). Each hodoscope consists of 10 plastic scintillators, and plastic scintillators of a hodoscope
are stacked with two layers. Odd and even number ones are placed downstream and upstream
with an overlap of 1.0 mm, respectively. Each plastic scintillator is a rectangular parallelepiped of

Figure 2.9: Top view of the tagging system. The tagging system is placed at the exit of BM2, and is
composed of two plastic scintillator hodoscopes and two SSD’s.
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7.4 (W)×3.0 (T)×10.0 (H) mm3, and a photo-multiplier tube (HAMAMATSU R1635P) is coupled
to it through a light guide. Two SSD’s are installed between the two hodoscopes. Each SSD is a
rectangular parallelepiped of 51.2 (W)×0.5 (T)×10.0 (H) mm3, which has 512 strips in total with a
strip pitch of 100 µm. Figure 2.9 shows the top of the tagging system.

Basically precise hit positions are measured by the SSD. To suppress the background events due
to the X rays and electro-magnetic showers, hit information of the associated plastic scintillators is
also used with the track which joins hit strips of the two SSD’s. It is also required to suppress the
background events that only one hit is found at each SSD in the area between the line successive
fired scintillators covers on the upstream hodoscope and the one on the downstream hodoscope .
This requirement causes three dips at 1.74, 1.94, and 2.14 GeV by suppressing the events that recoil
electrons pass through four plastic scintillators. The BCS photon energy ranging from 1.5 to 2.9 GeV
can be measured by the tagging system [57]. Figure 2.10 shows the energy spectrum of BCS photons

Figure 2.10: Energy spectrum of BCS photons measured by the tagging system. Three dips at 1.74,
1.94, and 2.14 GeV shown by the arrows are caused by the suppression of the events that recoil
electrons pass through four plastic scintillators.

measured by the tagging system. The BCS photon energy resolution is about 15 MeV (σ), which is
mainly determined by the energy and angular spreads of the circulating electron, and the performance
of the bending magnet BM2 as a momentum analyzer.

2.1.6 Materials on the beam line

The BCS photons travel from the collision point to the laser hutch (36 m) and to the experimental
hutch (70 m). The first mirror, windows of vacuum chambers, and a X ray absorber are placed on
the photon beam line, and photon beam flux is attenuated because some photons mainly converts to
e+e− pairs. The first mirror is made of aluminum evaporated silicon. It is 6 mm thick and is tilted
by 45◦ from the beam line. The windows are set at the exit of the vacuum chamber of the storage
ring, and at the entrance and exit of the vacuum chamber which joins the laser and the experimental
hutches. Each window is a 0.55 mm thick aluminum plate. The X ray absorber is introduced so that
detectors of the spectrometer work well, which is made of lead sheets, and is 1.5 mm in total. A
simple estimation of the transmission of the BCS photons from the interaction region to the target
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point is about 72%. However, the measured transmission is 58%. Figure 2.11 shows the schematic

Figure 2.11: Schematic view of the beam line. The first mirror, windows of vacuum chamber, and a
X ray absorber are set on the beam line. The e+e− pairs created in the materials on the beam line
are removed by a sweep magnet.

view of the beam line.

The e+e− pairs created in the material on the beam line or the residual gas in the vacuum chamber
of the storage ring is removed by a sweep magnet with a magnetic field of 0.6 T at the center as shown
in Figure 2.11. The sweep magnet is composed of two permanent magnets and an iron yoke. Each
permanent magnet is a rectangular parallelepiped of 58 (W)×1000 (T)×35 (H) mm3. A gap between
two magnets are 44 mm. The lead collimators with diameters of 20 and 25 mm is set upstream and
downstream of the sweep magnet. Electrons and positrons with a momentum below 2.1 GeV are
blocked by the downstream collimator.

2.2 Target

The nuclear targets used in the experiment were lithium (Li), carbon (C), aluminum (Al), and cop-
per (Cu) with thicknesses of 100 mm, 36 mm, 24 mm, and 3 mm, respectively. All the targets used
were natural. Table 2.1 shows the properties of the nuclear targets used. The densities of the Li, Al,
and Cu targets are the values in the property sheet [49] since the measured ones are consistent with
these values. On the other hand, the density of the C target is a measured value. The Li target block

Table 2.1: Properties of the nuclear targets used. The Li target was a block, and each of the other
three targets was divided into three pieces.

Target Mass Number A Thickness ξ [cm] Density ρ [g/cm3]

Li 6.941 10.0 0.534
C 12.011 3×1.20 1.730
Al 26.982 3×0.80 2.702
Cu 63.546 3×0.10 8.92

was placed in a target box filled with Ar gas. The windows of the target box were sealed with 50 µm
Aramid sheets. To minimize the difference of the acceptances among different target thicknesses and
to avoid a systematic error caused in the acceptance correction, each of the other three targets was set



2.3. LEPS SPECTROMETER 17

by dividing into three pieces with the same center of gravity and standard deviation of the position
along the photon beam direction as those of the Li target. Figure 2.12 shows shapes of the nuclear

Figure 2.12: Target shape. The target used in the experiment were Li, C, Al, and Cu. The Li target
block was set on a formed styrol. Each of the other three targets was set by dividing into three pieces,
and was set on a formed styrol.

targets used. To avoid the systematic errors due to the change of the beam conditions, targets were
exchanged every two hours.

2.3 LEPS spectrometer

Charged particles produced at the target are detected at forward angles with the LEPS spectrometer.
The LEPS spectrometer is located in the experimental hutch, which consists of a plastic scintillator
located at the exit of the vacuum chamber (upstream veto counter), a plastic scintillator behind
the target (start counter), a silica aerogel Čerenkov counter, a dipole magnet, a silicon-strip vertex
detector (SVTX), three multi-wire drift chambers (DC1, DC2, and DC3), and a plastic scintillator
hodoscope placed downstream of the tracking detectors (TOF wall). Charged particles produced
upstream of the experimental hutch are vetoed by the upstream veto counter. The SVTX, DC1,
DC2 and DC3 are used to track charged particles through the dipole magnet. A time of flight of
each track is measured by the start counter and the TOF wall. Electrons and positrons produced at
very forward angles are blocked by lead bars inside the gap of the magnet, and are vetoed by a silica
aerogel Čerenkov counter. Figure 2.13 shows the schematic view of the LEPS spectrometer.

2.3.1 Upstream veto counter

Some photons produces charged particles mainly by the e+e− pair production in air, and in the
residual gas and the widows of the vacuum chamber downstream of the sweep magnet. These charged
particles are identified by the upstream veto counter, and vetoed online. The upstream veto is made
of a plastic scintillator, and a rectangular parallelepiped of 190 (W)×5 (T)×200 (H) mm3. The 2
inch diameter photo-multiplier tube (HAMAMATSU H7195) is coupled to the scintillator through a
light guide.
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Figure 2.13: Schematic view of the LEPS spectrometer. The LEPS spectrometer consists of a dipole
magnet, a silicon-strip vertex detector (SVTX), three multi-wire drift chambers (DC1, DC2, and
DC3), a plastic scintillator behind the target (start counter), a silica aerogel Čerenkov counter, and
a plastic scintillator hodoscope placed downstream of the tracking detectors (TOF wall).

2.3.2 Start counter

Charged particles produced at a target is detected by the start counter. The start counter is made
of a plastic scintillator, and a rectangular parallelepiped of 150 (W)×5 (T)×94 (H) mm3. Since the
magnetic leakage field of the dipole magnet is a few mT which the start counter is located at, the fine
mesh photo-multiplier tubes (HAMAMATSU H6614-01) with a diameter of 2 inch are coupled directly
to the scintillator from the top and bottom. The start signal for the time of flight measurement is
produced by the start counter.
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2.3.3 Aerogel Čerenkov counter

Main background events for the measurement of hadronic reactions are the e+e− pairs produced in the
target, the start counter, air downstream of the upstream veto counter, and the downstream surface
of the upstream veto counter itself. These e+e− events are vetoed online by an aerogel Čerenkov
counter. In the aerogel Čerenkov counter, two sheets of silica aerogel radiators with a refractive index
of 1.03, which are rectangular parallelepipeds of 110 (W)×25 (T)×110 (H) mm3, are filled in the box
with a rectangular parallelepiped of 120 (W)×60 (T)×110 (H) mm3. The box is made of black paper,
and Gortex sheets are spreaded on its inside surface as a random reflector. The magnetic leakage field
is also a few mT which the counter is placed at, fine mesh photo-multiplier tubes (HAMAMATSU
H6614-01) with a diameter of 2 inch are used to read out Čerenkov-photon signals. Two tubes
are coupled directly to the counter from the top, and the other two are coupled from the bottom.
Figure 2.14 shows the structure of the aerogel Čerenkov counter. Since the refractive index of the

Figure 2.14: Structure of the aerogel Čerenkov counter. Two sheets of silica aerogel radiators with a
refractive index of 1.03, are filled in the box.

radiators are 1.03, a charged particle with velocity faster than 1/1.03 emits a Čerenkov light. The
events that includes electrons, positrons, charged pions with momenta higher than 0.57 GeV, or
charged kaons with momenta higher than 2.00 GeV are rejected in the trigger level.

2.3.4 Dipole magnet

Charged particles are momentum analyzed by a dipole magnet, which is placed at the center in the
experimental hutch. The aperture of the magnet is 1350 (W)×550 (H). The length between the
pole edges is 600 mm. The Vector Fields TOSCA 6.6 package in the OPERA-3D suite [58] is used
to calculate the magnetostatic field of the magnet. A finite element method is used in TOSCA,
which obtains solutions of partial differential or integral equations that cannot be solved by analytic
method. The method is based on divisions of domain to solve the equation into small finite elements,
and within each finite element a simple polynomial is used to approximate the solution. The finite
element method used in TOSCA is described in Appendix G.3.

In the magnetostatic field calculation of the LEPS dipole magnet, each finite element was a
hexahedron, and divided regions of the dipole magnet are shown in Figure 2.15. Each region is
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Figure 2.15: Division region of the dipole magnet for the field calculation. Each region is further
divided into small finite elements. Coils are filled in red, and an iron yoke is filled in blue.

Figure 2.16: Relation between the magnetic
flux density B and field H of the iron yoke.

Figure 2.17: Comparison between the calcu-
lated and measured magnetic fields.

further divided into small finite elements. Number of divisions to the elements were increased step
by step. When the maximum difference in all the domain between the current and the previous steps
becomes less than 0.3 mT, the results of the current step was adopted as a final one. Figure 2.16
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shows the relation between magnetic flux density B and magnetic field H of the iron yoke for the
field calculation1, and Figure 2.17 shows the comparison between the calculation and the measured
field with a hole probe. Figure 2.18 shows the magnetic field By along the z axis. The origin

Figure 2.18: Magnetic field By along the z axis. The central position of the target, the start counter,
aerogel Čerenkov counter (AC), the silicon strip vertex detector (SVTX), and three drift cham-
bers (DC1, DC2, and DC3) are shown by the arrows.

(x, y, z) = (0, 0, 0) is the center of the dipole magnet.
Trajectories of charged particles are determined by a silicon strip vertex detector, three drift

chambers, and a plastic scintillator hodoscope.

1In this thesis, the magnetic flux density B is often called by the magnetic field since only the density in the air
region is need to analyze momenta of charged particles.
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2.3.5 Silicon strip vertex detector (SVTX)

Positions close to the target are measured by a silicon strip vertex detector (SVTX) with a high
precision. The SVTX consists of sixteen silicon strip detectors (SSD) with a pitch of 120 µm. Two
SSD layers are stacked in all the effective region, one of which measures x positions and the other
measures y positions. The SVTX has a diamond-shaped hole with a size of 10×10 mm3 for the BCS
photon beam path. Figure 2.19 shows the structure of the SVTX.

Figure 2.19: Structure of the SVTX. The SVTX consists of sixteen SSD with a strip pitch of 120 µm
with a diamond-shaped hole in the center.

2.3.6 Drift chambers

Positions upstream and downstream of the dipole magnet which charged particles pass through are
measured by three drift chambers (DC1, DC2, and DC3). The DC1 is placed just behind the SVTX
upstream of the magnet. The DC1 has six wire planes which are X 00, V , U 0, U , X 0, and X wire planes
from the upstream side. The DC2 and DC3 are placed downstream of the magnet. The design of the
DC2 and DC3 are the same, and have five wire planes which are V , U 0, U , X 0, and X wire planes
from the upstream side. Wires of the X , X 0, and X 00 planes are strained in the vertical direction.
Wires of the U , U 0 planes in DC1, those of the V plane in DC1, those of the U , U 0 planes in DC2 and
DC3, those of the V plane in DC2 and DC3 are inclined by +45◦, −45◦, +30◦, −30◦, with respect
to the vertical direction, respectively. Sense wires of each plane in DC1 are positioned with a 12 mm
spacing, and those in DC2 and DC3 are positioned with a 20 mm spacing. Sense wires are surrounded
by field wires arranged with a honeycomb shape. The X—X 0 and U—U 0 planes are doublet, and the
wires of X 0 and U 0 planes are shifted by a half wire spacing of the plane. Shield wires are installed
outside the field wires in order to arrange the electric field. Figure 2.20 shows the structure of the
DC wire planes. Sense wires of DC1 are made of gold plated tungsten (Au—W) with a diameter of
25 µm, and those of DC2 and DC3 are made of Au—W with a diameter of 30 µm. The field and
shield wires are made of gold plated alloy of beryllium and copper (Au—BeCu) with a diameter of
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Figure 2.20: Structure of the DC wire planes. The upper panel shows the structure of doublet X—X 0

and U -U 0 wire planes, and the lower one shows the structure of X 00 and V planes.

100 µm. The windows are made of mylar with a thickness of 125 µm. The design parameters are
summarized in Table 2.2. The gas mixture used to operate DC is 70% argon and 30% isobutane with

Table 2.2: Design parameters of DC. The orientation is an inclination angle of the wires with respect
to the vertical direction. The wire spacings for X—X 0 and U—U 0 planes in this table are the one two
planes are treated as one plane. The location z shows the center position of each DC where z = 0 is
defined as the center of dipole magnet.

Plane Orientation #Sense wires Wire spacing (mm) location z

DC1 X—X 0 0◦ 48×2 6 -466.0
U—U 0 +45◦ 48×2 6
V −45◦ 48 12
X 00 0◦ 48 12

DC2 X—X 0 0◦ 104×2 10 860.5
U—U 0 +30◦ 78×2 10
V −30◦ 79 20

DC3 X—X 0 0◦ 104×2 10 1260.5
U—U 0 +30◦ 78×2 10
V −30◦ 79 20

a little isopropyl alcohol. The position resolution of DC1 is about 130 µm. and that of DC2 and DC3
is about 200 µm. The typical supplied high voltages are −2000 V, −2400 V, and −2700 V to the
shield, the DC1 field, and other DC field wires, respectively.
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2.3.7 TOF wall

A time of flight for each charged particle is measured by a plastic scintillator hodoscope (TOF wall).
The TOF wall located downstream of DC3. Each scintillator is a rectangular parallelepiped of
120 (W)×40 (T)×2000 (H) mm3. Two photo multiplier tubes (HAMAMATSU H7195) are cou-
pled to each scintillator through a light guide from the top and bottom. There exists a gap of 40 mm
between the central two scintillators for the photon beam path. Sideway scintillators are aligned in
the planes yawed by ±15◦. Figure 2.21 shows the structure of the TOF wall. The center of the TOF
wall is z = 3151.5 mm, where the location of z = 0 is the center of the dipole magnet.

Figure 2.21: Structure of the TOF wall. The upper panel shows the top view of the TOF wall, and
the lower one shows the front view.

2.3.8 e+e− blocker

Most of e+e− pairs produced at the target and at the start counter are scattered at very forward
angles. Since the magnetic flux goes from the bottom to the top, these particles spread in the median
plane. Low energy electrons and positrons with momenta lower than 1 GeV are blocked by lead
bars inside the gap of the magnet (e+e− blocker). Each lead bar is a rectangular parallelepiped of
440 (W)×100 (T)×40 (H) mm3, and the gap of the two bars is 155 mm. Two lead bars are supported
by a V-shaped thin SUS bar with a thickness of 5 mm. The center of lead bars are −7 mm in the
y-direction. Figure 2.22 shows the schematic view of the e+e− blocker.
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Figure 2.22: Schematic view of the e+e− blocker. The upper panel shows the place the e+e− blocker
is set at, and the lower one shows the structure of the e+e− blocker.

2.4 Data Acquisition

2.4.1 Electronics

In this subsection, the electronics for each detector system is described [59, 60]. Figure 2.23 shows
the electronics for the trigger counters.

Tagging System

Signals from the plastic scintillator hodoscopes in the tagging system are divided. The charges of the
analog signals are read out by the LeCroy 4300B (FERA: Fast Encoding & Readout ADC) modules,
of which gate width is set at 150 nsec. The timings of the discriminated signals are read out by the
LeCroy FASTBUS 1877S, of which time resolution is 0.5 nsec a channel and of which dynamic range
is 1 µsec.

The VA chips are used for reading out SSD signals. The silicon strips and the VA chips are
mounted on a printed circuit. The circuit is connected to a repeater card which contains adjustable
bias supply for the VA chips, and buffer amplifier for analog signals. Analog signals from the VA chip
are sent to a flash ADC module through the repeater card.

Upstream veto counter

Signals from the upstream veto counter are divided. The charges are read out by FERA, and the
timings are read out by the LeCroy FASTBUS 1875A, of which time resolution is 0.025 nsec a channel
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Figure 2.23: Electronics for the trigger counters. Trigger signals are formed from the logic signals of
the tagging system, the upstream veto counter, the start counter, the aerogel Čerenkov counter, and
the TOF wall.
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and of which dynamic range is 100 nsec.

Start counter

Signals from the start counter are divided, and the charges are read out by FERA, and the timings
are read out by the LeCroy 1875A.

Aerogel Čerenkov counter

Signals from the aerogel Čerenkov counter are divided, and the charges are sent to FERA through a
high pass filter, and the timings are read out by the LeCroy 1875A.

Silicon strip vertex detector (SVTX)

The readout system for the silicon strip detectors are the same as that for SSD in the tagging system.

Drift chambers

Signals from the wires are amplified and discriminated by a pre-amplifier card and an amplifier and
discriminator card. The timing of the signals are read out by the LeCroy 1877S.

TOF wall

Signals from the TOF wall are divided, and the charges are read out by FERA, and the timings are
read out by the LeCroy 1875A.

RF signal

A radio frequency (RF) of 508.58 MHz is used in the 8 GeV storage ring to accelerate electrons to
8 GeV which lose some energies due to the synchrotron radiation. A start timing for a time of flight
measurement is defined by the RF signal instead of the start counter one in order to achieve high
timing resolution. An interval of the successive RF signals is 1.966 nsec. The timing of the RF signal is
read out by the LeCroy 1875A and the LeCroy 1877S through prescalers (DIGITAL LABORATORY
17K32 508-MHz 30 bit). The RF signal is prescaled with a factor 1/87. One output of the prescaled
signal is sent directly to the LeCroy 1875A, and another is sent with a 86 nsec delay. The other is
further prescaled with a factor 1/28, of which three outputs are sent to the LeCroy 1877S with 0, 1.8,
and 3.6 µsec delays. The data read out by the LeCroy 1877S is used to investigate accidental rates
in the tagging system.

2.4.2 Trigger

Trigger signals are formed from logic signals of the plastic scintillator hodoscope in the tagging
system (TAGGER), the upstream veto counter (UPVETO), the start counter (START), the aerogel
Čerenkov counter (AC), and the TOF wall (TOF). The trigger logics are described as

Hadron Trigger : (TAGGER⊗UPVETO)⊗ (START⊗AC)⊗ TOF (2.13)

e+e− Trigger : (TAGGER⊗UPVETO)⊗ START⊗ TOF (2.14)

Each logic signal is formed as follows.

TAGGER: The TAGGER signal is coincidence signals of plastic scintillator hodoscope signals, each
of which is summed signal of plastic scintillator signals in a hodoscope.
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UPVETO: The UPVETO signal is a logic signal of the upstream veto counter.

START: The START signal is a coincidence signal of the top and bottom photo-multiplier tube
signals

AC: The AC signal is a summed signal of four photo-multiplier tube signals.

TOF: The TOF signal is a summed signal of 40 scintillators, each of which is a coincidence signal
of the top and bottom photo-multiplier tube signals.

The trigger timing is defined by the delayed start counter signal. Figure 2.24 shows the diagram of
the trigger logic.

Figure 2.24: Diagram of the trigger logic. The hadron and e+e− triggers are described. The trigger
timing is defined by the delayed start counter signal. The trigger signal provides the ADC gate, the
common start signals for the TDC 1875A, and the common stop signals for the TDC 1877S.

2.4.3 Data taking system

The data taking system is divided into three subsystems. The first one processes the FERA modules
in the CAMAC system. The digitized data are collected with a universal I/O module (UIO) with an 8
MB memory in a VME system through the LeCroy 4301 (FERA driver). The UIO module is designed
as a buffer sequencer for reading out and buffering of the data. The buffered data are transferred to
the Sun Microsystems Force 7V in the VME system. The second one processes the FADC modules in
a VME system. The digitized data are transferred to another Force 7V through another UIO module.
The third one processes the FASTBUS TDC modules. The Next-Generation FASTBUS (NGF) is
used as a buffer sequencer and interface module. The digitized data are transferred to the other
Force 7V through NGF. All the buffer sequencer works double buffer mode to reduced the dead time.
During a readout sequence of a buffer by the Force 7V, digitized data are stored in another buffer.
The data of the three subsystems are collected by the COMPAQ Alpha Server 1200. The dead time
of the data taking system was typically 10 % under the condition with a trigger rate of 150 Hz.
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2.4.4 Obtained data

The experiment was carried out from the 8th to the 20th November in 2001. The vertically and
horizontally polarized photon data were collected in similar amount. About 40 % of the data were
junk because serious troubles took place – one of the majority logic modules were out of order,
the ring buffer of the TDC1877S sometimes became working abnormally, and so on. The number
of hadron triggers which could be used was 8.0, 10.0, 17.1, and 27.8×106 for Li, C, Al, and Cu,
respectively. The rate of the tagging system was typically 800 kHz, and 600 kHz for the vertically
and horizontally polarized BCS photons, respectively. The hadron trigger rate was 100—150 Hz, and
the prescaled e+e− trigger rate was about 10 Hz.
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Analysis

In this chapter, data reduction is described, which contains reconstruction of charged particle tracks,
selection of the φ events, and the mass and width of the observed φ events.

3.1 Program codes

3.1.1 Analysis code: LEPSana

Raw data by the data taking system is processed by an analysis code LEPSana. The LEPSana has
been developed by the LEPS collaboration. The digitized ADC and TDC data of the detectors are
processed and the BCS photon beam energy, momenta, positions, and masses of charged particles are
extracted. The output of the program are written in NTUPLE format [61] and further analysis is done
by accessing output NTUPLE files in the physics analysis workstation (PAW) [63]. The calibration
of the detectors and the determination of the parameters have been done beforehand. Processing of
the TOF wall data requires timing offsets and gains of plastic scintillators, and that of the tagging
system data requires timing offsets and gains of the plastic scintillator hodoscopes. Processing of
the drift chamber data requires the timing offsets, the relations of drift times to drift lengths, and
position resolutions.

3.1.2 Monte Carlo simulation code: g3leps

The acceptance of the LEPS spectrometer, the resolution of the physical values were studied by a
Monte Carlo simulation code g3leps. The g3leps has been developed by the LEPS collaboration, and
which is based on the CERN library [62] including GEANT 3.21 [64]. It simulates a generation of
particles from the φ photo-production, processes during passage of the particles through the experi-
mental apparatus taking into account decay in flight, energy loss, multiple scattering of the particles.
The φ mesons were produced so that the s-channel helicity should be conserved, which discussed in
Appendix B. A harmonic oscillator model was used to determine momentum of a nucleon in a nucleus,
which is discussed in Appendix F.1. The GHEISHA package was used to simulate hadronic interac-
tions. The measured resolution and efficiency of the silicon strip vertex detector (SVTX) and the drift
chambers, timing resolution of the TOF wall counters were implemented in g3leps. A realistic beam
shape of the polarized BCS photon beam, and its resolution were implemented very well. Generated
data of the events by the simulation code were analyzed by the exactly same process as the real data
were analyzed by the LEPSana. The output of the program are also written in NTUPLE format [65].

30
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3.2 Timings, positions, and resolutions

3.2.1 TOF wall

Consider a charged particle passes through y apart from the center of the plastic scintillator at a
time t0. The timings when light reach the top and bottom side photo-multiplier tubes (PMT) tT and
tB are described as

tT = t0 +
L/2− y
v

, and

tB = t0 +
L/2 + y

v
,

(3.1)

where v is an effective speed of light in a plastic scintillator. The t0 can be determined by averaging
the times tT and tB. Figure 3.1 shows the variables for determining timings. The timing of a

Figure 3.1: Plastic scintillator of which light signals are recorded in both sides. The t0 stands for the
timing when the charged particle penetrate the plastic scintillator with a length L at the position y.
The tT denotes the timing when light reaches the top side PMT, AT and TT stand for the measured
ADC and TDC values in the top side, respectively. The tB , AB, and TB are defined for the bottom
side in the same manner as the top side.

discriminated signal depends on a pulse height. The tT and tB are determined by the TDC values
TT , TB, and the ADC values AT , AB in the top and bottom signals, respectively (a pulse height
dependent time walk correction).

tT = (TT +
2aT√
AT

+ T 0T )× 0.025 nsec/channel, and

tB = (TB +
2aB√
AB

+ T 0B)× 0.025 nsec/channel,
(3.2)

where aT and aB are coefficients for the pulse height correction, and T
0
T and T

0
B are the timing offsets.

Therefore, the t0 is determined by

t0 =

µ
TT + TB

2
+

aT√
AT

+
aB√
AB

+ T0

¶
× 0.025 nsec/channel, (3.3)
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where T0 = (T
0
T+T

0
B)/2. The three parameters aT , aB, and T0 are obtained for each TOF counter [66].

From Eq. (3.1), the hit position y is described as

y = v
tB − tT
2

= v(
TB − TT

2
+

aB√
AB
− aT√

AT
+ Tdiff .)× 0.025 nsec/channel, (3.4)

where Tdiff . = (T
0
B − T 0T )/2. The effective speed of light v and Tdiff . were obtained by the hit position

predicted by the downstream drift chamber positions [66].

3.2.2 RF signals

The circulating electrons are bunched according to a RF signal, and the arrival time of a BCS photon
at the target position is synchronized with the RF signal. Since the common start signals of TDC
modules are provided by the start counter. The timings of the RF signals depend on pulse heights of
the start counter photo multiplier tubes. The corrected RF timing T corr.RF is determined with the top
and bottom TDC values T SCT , T SCB , and the ADC values ASCT , A

SC
B of the start counter as

T corr.RF = TRF +
1

2

T SCT + T SCB +
aSCTq
ASCT

+
aSCBq
ASCB

+
bSCT
ASCT

+
bSCB
ASCB

 , (3.5)

where TRF is obtained TDC of the RF signal, and aSCT , a
SC
B , b

SC
T , and b

SC
B are coefficient for the

pulse height correction. The corrected timing T corr.RF is used for determining a time of flight, and its
resolution is about 150 psec [66].

3.2.3 Drift chambers

The edge timings of signals are recorded for each wire of the drift chambers, and each recorded timing
has a flag whether it is leading or trailing. In the experiment, six timings of edges were recorded at
most. An ideal signal has basically two edges, one leading and one trailing ones, but signals are
raised associating with a true one as electric noises. The timing of a raised signal is delayed, or a
raised signal has a shape like a spike. At first, a threshold for an interval between the leading and
trailing edges (width) is set to reject signals which have spike-like shapes. Figure 3.2 shows the width
distributions together with thresholds. The signals with narrower widths than the thresholds are
rejected. The first signals are selected for each wire among the signals that are not rejected by the
thresholds for the widths.

A drift time tdrift is determined from a timing offset T0, and a timing of an leading edge of the
first hit (T ) as

tdrift = −(T − T0)× 0.5 nsec/channel. (3.6)

T0 is determined by fitting the right edge of the timing T distribution with a Gaussian convoluted
step function since charged particles come with a uniform distribution in a local region. Figure 3.3
shows the T distributions together with a fitted Gaussian convoluted step function at T0.

The drift time tdrift is translated to the drift length xdrift (x-t curve) as

xdrift = c1tdrift + c2t
2
drift + c3t

3
drift, (3.7)

where c1, c2, and c3 are the parameters for the x-t curve, and monotonous increase is required for

xdrift. The parameters are determined plane by plane. Given parameters c
(n)
1 , c

(n)
2 , and c

(n)
3 for all

the planes, a straight line fitting in three dimensional space is made where the hit information in the
plane of interest is not used. The fitting is made with the positions at SVTX and DC1 if the plane of
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Figure 3.2: Threshold for DC widths. The hits with a short interval between the leading and trailing
edges (width) corresponds to an electric noise. The cut points are shown in the line.

Figure 3.3: Zero timing T0. T0 is determined by fitting with a Gaussian convoluted step function.

interest is that of DC1, otherwise the fitting is made with the positions at DC2 and DC3. The drift
length is obtained by the fitting line as a function of tdrift for the plane of interest. The parameters

c
(n+1)
1 , c

(n+1)
2 , and c

(n+1)
3 for the plane of interest are obtained by fitting with Eq. (3.7), and those for

the other planes are determined in the same way.

The simulation code GARFIELD Ver. 5.10 [67] has been used to determine initial parameters c
(0)
1 ,

c
(0)
2 , and c

(0)
3 . The supplied high voltage for the field wires were −2400 V, −2700 V, and −2700 V

for DC1, DC2, and DC3, respectively. The −2000 V of high voltage is supplied for all the shield
wires. The mixed gas of 70% argon and 30% isobutane was used. Figure 3.4 shows the contour of the
electric potential and the drift line to the wire for electrons, which are obtained by the simulation.
Figure 3.5 shows the relation between the drift length and the drift time for DC’s obtained by the
simulation. Figure 3.6 shows the relation between the drift length and the drift time in the real data.

The difference between the drift lengths predicted by the fitting line and translated from the drift
time is called residual. Two kind of residuals are given whether the plane of interest is included or
not on the straight line fitting in three dimensional space. The width of the residual distributions σinc
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Figure 3.4: Contour of the potential and the drift line calculated by GARFIELD. The left panel
shows the contour plot of the electric potential and the right one shows the drift line to the wire for
electrons.

Figure 3.5: The relations between the drift length and the drift time calculated by GARFIELD. The
left panel shows that of DC1, and the right one shows that of DC2 and DC3.

and σexc are determined for including the plane of interest and excluding it, respectively. Figure 3.7
shows the residual distributions. The σinc and σexc are found to be proportional to the intrinsic
position resolution obtained by a simple simulation. In the simulation, the particles go along a line,
and positions are measured at DC planes. The measured positions are smeared out according to the
intrinsic resolution. The straight line fittings in three dimensional space are made with the measured
positions, and the residual is obtained. Table 3.1 shows the factor of the intrinsic resolutions to the



3.2. TIMINGS, POSITIONS, AND RESOLUTIONS 35

Figure 3.6: Relation between the drift length and the drift time. The drift length is obtained by the
straight line fitting in three dimensional space.

Figure 3.7: Residual distributions. The left and right panels show the residual distributions under the
conditions that the plane of interest is included and excluded in the straight line fitting, respectively.

Table 3.1: Factors of the intrinsic resolutions to the residuals. The rinc and rexc denote the factor of
the intrinsic resolutions to the residuals for the straight line fitting including and excluding the plane
of interest.

X X 0 U U 0 V X 00

rinc(DC1) 0.688 0.764 0.756 0.768 0.689 0.521
rinc(DC2) 0.726 0.701 0.718 0.688 0.559 –
rinc(DC3) 0.685 0.717 0.688 0.721 0.686 –

rexc(DC1) 1.424 1.278 1.300 1.282 1.430 1.920
rexc(DC2) 1.390 1.459 1.371 1.433 1.767 –
rexc(DC3) 1.421 1.362 1.432 1.374 1.392 –
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residuals including and excluding the plane of interest rinc. and rexc. for each plane determined by the
simulation, respectively. Thus, the intrinsic position resolution for each plane is determined as

σ =
1

2

µ
σinc
rinc

+
σexc
rexc

¶
. (3.8)

Table 3.2 shows the intrinsic resolutions of drift chambers.

Table 3.2: Intrinsic resolutions of drift chambers.
X X 0 U U 0 V X 00

DC1 0.191 0.192 0.180 0.176 0.219 0.207
DC2 0.215 0.213 0.241 0.242 0.503 –
DC3 0.232 0.232 0.250 0.240 0.435 –

3.3 Determination of the variables

3.3.1 Tracking

A trajectory of a charged particle is determined by hit positions at the silicon strip vertex detec-
tor (SVTX), the three drift chambers (DC1, DC2, and DC3), and the TOF wall counters. Since the
DC3 does not cover all the aperture of the dipole magnet, the hit information of the TOF wall is
used instead of DC3 in case that no hit information is found in DC3. The determining process of the
trajectory is called as ’tracking’.

On the first stage of the tracking, clusters in each detector are searched. A cluster in SVTX is
comprised of a hit in the x layer and one in the y layer. A cluster in DC1 is composed of more than
four wires in the six planes of DC1, and that in DC2 and DC3 is composed of more than three wires
in the five planes of DC2 and DC3. Each cluster in DC’s does not include more than two hits in the
same plane.

On the second stage, straight line fittings in three dimensional space are carried out upstream and
downstream of the magnet separately. The hit information that each fired wire has is a drift distance,
and an ambiguity exists whether the particle passes through in the left (up) side or the right (down)
side. The side that the particle passes through is solved in this stage. The best 30 combinations of
clusters are selected in each stream in terms of χ2. This combination of clusters in each stream is
called ’track’.

On the third stage, the initial values for the Kalman filter method are determined. Among
the combination of the upstream and downstream tracks, the consistency is required so that the
projections of the upstream and downstream tracks crosses in the x-z plane, and that the slopes in
the y-z plane dy/dz are not so different between the upstream and downstream tracks. The initial
values of positions x, y and the directions dx/dz, dy/dz at SVTX are obtained from the upstream
track, and those of momentum p and charge q are estimated by the bending radius at the cross point
of the upstream and downstream tracks.

The final stage determines trajectories with the Kalman filter method that performs a least square
fit to the measured hit positions including the effects of multiple scattering and energy loss. The
background hits (outliers) are removed on this stage [66]. In the tracking analysis, the sign of the
charge, the absolute momentum, the momentum vector, the path length from the target to the TOF
wall, and vertex points are obtained
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3.3.2 Time of flight

A time of flight TTOF is described by the start time TSTART and the stop time TSTOP as

TTOF = TSTOP − TSTART (3.9)

The TSTOP is determined by the time of the TOF wall counters, and the TSTART is determined by the
RF signals instead of the start counter’s to achieve high resolution for the time of flight measurement.

3.3.3 Mass

Mass of a charged particle m is determined with a momentum p, a path length L, and a time of flight
TTOF as

m2 = E2 − p2 = p2
(µ

E

p

¶2
− 1

)
= p2

µ
1

β2
− 1

¶
, (3.10)

where β is a velocity of the particle in unit of the speed of the light as

β =
L/TTOF

c
(3.11)

3.4 Event Selection

The various cuts that were used to select the φ→ K+K− events are discussed.

3.4.1 Good buffers

In the experiment, serious troubles of the data taking system have happened, and only the good
buffers are used. The confirmation of good buffers is described in Appendix G.1.

3.4.2 Number of tracks

The number of charged particles was required to be larger than 1 to select the φ → K+K− events.
Table 3.3 shows the number of tracks for each target,

Table 3.3: Number of the tracks
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

0 507713 385784 645325 405656 900796 824051 1152587 1485740
1 2093165 1685429 2711223 1856318 3569146 3731602 6691196 5898745
2 77038 62848 91483 62847 112137 114199 181200 157175
3 1866 1421 2059 1309 2373 2234 3537 2734
4 20 23 35 16 34 26 40 54

Sum 2679802 2135505 3450125 2326146 4584486 4672112 8028560 7544448
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3.4.3 Particle identification

Particle identification was made by the reconstructed mass. The mass resolution was momentum
dependent, and parameterized as

σ2m2 = 4m4

Ã
1 +

µ
m

p

¶2!
a21 + 4m

4p2a22 + 4p
2(p2 +m2)

µ
c

L
a3

¶2
, (3.12)

where a1, a2, and a3 are parameters, m is the nominal value of the mass, and c is the speed of light, p
is measured momentum, and L is the path length between the start counter and the TOF wall. The
first and second terms in Eq. (3.12) correspond to the measured momentum resolution asÃ

σ2p2

p

!
=
a21
β2
+ p2a22. (3.13)

The first term in Eq. (3.13) shows the contribution of the multiple scattering, and the second one
shows the momentum analysis resolution of the spectrometer. The last term in Eq. (3.12) shows the
timing resolution of the time of flight measurement. Figure 3.8 shows the resolution of the mass square
for the proton. The resolution of the mass square was determined by the width of a Gaussian function
fitted to the measured mass square distribution. Red lines show the parameterization in Eq. (3.12)
with the resolutions of the detector systems, which reproduces the measured one as well. Here L is
fixed to 4100 mm. Figure 3.9 shows measured mass square of the proton, which the corrections of the
flight length and the energy deposit at the scintillator of the TOF wall have been applied, together
with the lines of the particle data group (PDG) value for the proton mass square [49]. In the low
momentum regions, the measured mass squares are smaller than the nominal value. In the case that
the ADC of the top or bottom side in the TOF wall counters is saturated, the timing of the TOF
counters are not estimated correctly due to the wrong pulse height corrections. Figure 3.10 shows

Figure 3.8: Momentum dependence of mass square resolution for the proton. The red lines show the
estimated mass square resolution with the parameterization in Eq. (3.12).
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the mass square of the proton for the ADC non-saturated events, and there are no dips in the low
momentum region.

Kaons were identified within 4σ of the mass resolution, which was momentum dependent and
is about 30 MeV for kaons with momentum of 1 GeV. Figure 3.11 shows two dimensional plot

Figure 3.9: Momentum dependence of mass square for the proton. The red lines show the nominal
mass square of the proton.

Figure 3.10: Momentum dependence of mass square for the ADC non-saturated events. The red lines
are same as Figure 3.9.
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Figure 3.11: Particle identification. The boundaries for kaon identifications are shown in the red lines

between measured mass square m2 and measured momentum divided by charge p/q together with
kaon identification boundaries. The inclined loci correspond to the accidental coincidence with the
charged particles associate with successive RF bunches. The time of flight of these particles are
mis-measured by 1.966 nsec. When the events in which the number of tracks are larger than 1 are
selected, these loci disappear as shown in Figure 3.12. The proton accidental coincidence tracks are
still observed in heavier targets, but contamination of these tracks appear in the higher momentum
than that of charged kaons decaying from φ mesons as discussed in Appendix C.1.1. The difference
between the measured and nominal mass squares in the low momentum region does not affect the
acceptance of the particle identification. It is because the energy loss of a kaon in the TOF counters is
basically smaller than that of a proton. It is also because the difference of the mass square is smaller

Table 3.4: Number of the events after the particle identification cut.
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 489 428 457 346 413 469 467 456
3 16 18 20 10 16 14 20 15
4 0 0 1 0 0 0 0 0

Sum 505 446 478 356 429 483 487 471
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Figure 3.12: Particle identification for two track events. The boundaries for kaon identifications are
shown in the red lines

than the twice of the resolution in the low momentum region even for the proton.

The condition where at least one K+ and one K− should exist is required. Table 3.4 shows the
number of events which survived after the particle identification cut.

3.4.4 Good tracks

Three conditions are required for a good track described below.

High χ2 probability

The χ2 probability is used to select good tracks to eliminate background events. The χ2 probability
is defined as

Prob(χ2,ndf) =

Z ∞
χ2
f(χ02,ndf)dχ02, (3.14)

where f is the standard χ2 distribution with a number of degree of freedom ndf. A χ2 probability
higher than 0.02 is required for a good track.
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Consistency of the hit position at the TOF counter

It is required that a fired TOF counter corresponding to the track exists, that the counter is the same
or adjacent ones predicted by the tracking, and that the difference between y positions measured by
the TOF counter and predicted by the tracking is less than 80 mm.

Number of outliers

In the case that χ2 probability becomes higher when a hit is removed from the track, the hit is judged
as a background hit (outlier). Number of outliers in processing Kalman filter method is required to
be less than 7.

The following conditions are the summary of the requirements for a good track

• χ2 probability is higher than 0.02,

• a fired TOF counter corresponding to the track exists,
• a fired TOF counter is the same or adjacent ones predicted by the tracking,
• the difference between y positions measured by the TOF counter and predicted by the tracking
is less than 80 mm, and

• number of outliers is less than 7.
The events that had at least one goodK+ and one goodK− tracks were selected, and this cut removes
decaying K+ and K− tracks in flight.

Table 3.5 shows that the number of events which survived after the good track cut.

Table 3.5: Number of the events after the good track cut.
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 300 255 257 209 235 270 267 254
3 10 11 6 3 7 4 10 9

Sum 310 266 263 212 242 274 277 263

3.4.5 Closest distance

The K+K− tracks decaying from φ mesons should come to a point, namely closest distance of them
should be zero. The calculated closest distance from the tracking information is not always zero
due to the finite tracking resolution, the effect of multiple scattering, and so on. Figure 3.13 shows
the closest distance distribution of the K+K− tracks decaying from φ meson in the Monte Carlo
simulation (MC) data. Almost all the events concentrated around the closest distance of 0 mm, yet
few events were scattered in the larger region. Figure 3.14 shows the closest distance distribution for
each target in the real data.
In order to discard the K+K− tracks that are not originated from a point, the closest distance of
these is required to be less than 5 mm. Although the calculated closest distance of the K+K− tracks
decaying from φ mesons in the MC simulation can have larger values. A few events that the K+K−

tracks comes from one vertex point do not pass this closest distance cut, yet this cut kill the almost
no K+K− tracks decayed from φ mesons. Table 3.6 shows number of events after the closet distance
cut is applied.
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Figure 3.13: Closest distance distributions ofK+K− tracks in the MC simulation. Events concentrate
at 0 mm in the closest distance distributions.

Figure 3.14: Closest distance distributions for K+K− tracks in the real data. Measured closest
distance distributions are similar to those in the MC simulation.

3.4.6 Vertex

Because the full width of φ meson is a few MeV, it decays during tens of fm flight, and the vertex
point of K+K− tracks can be treated as the same as the produced point of φ meson. The vertex
points should be in the target volume except for smearing out by the finite resolution.

Figure 3.15 shows z coordinate of the vertex position (z-vertex) for the K+K− tracks. Li target
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Table 3.6: Number of events after the closest distance cut.
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 298 249 249 203 226 262 257 249
3 10 10 6 3 7 4 10 9

Sum 308 259 255 206 233 266 267 258

consists of one block, and C, Al, and Cu targets are divided into three sheets and each sheet was
placed every 35 mm spacing in z coordinate so that the center and standard deviation of target
volume in z coordinate should be the same shown in Figure 2.12. In order to discard the events from
the start counter, z-vertex is required as

−990. ≤ z < −863. for Li
−990. ≤ z < −872. for C, Al, and Cu. (3.15)

Each boundary of upstream side is determined so that this cut should not kill the events whose
z-vertex is smeared out by the resolution, and that of downstream side is determined to be center
between downstream edge of the downstream sheet of the target and upstream edge of the start
counter (a common boundary is adopted for C, Al, and Cu). Small opening angle events have poor
resolution on z-vertex, the survived events after this cut can be contaminated by the events from the
start counter. The estimation of the contamination is discussed in Subsection 3.6.1. Table 3.7 shows

Figure 3.15: z-vertex distribution of the K+K− tracks. The events associate with the target and the
start counter are separated clearly.
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the number of events after the z-vertex cut is applied. Figure 3.16 shows the (x, y) coordinate of the

Table 3.7: Number of the events after z-vertex cut
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 267 232 223 182 204 239 190 176
3 8 101 6 1 5 3 5 7

Sum 275 242 229 183 209 242 195 183

vertex position after the z-vertex cut is applied where red rectangles show the target size. In order
to discard the events that come from other than target, x and y vertex is required as

−20. ≤ x < +20., −15. ≤ y < +15. for Li
−25. ≤ x < +25., −25. ≤ y < +25. for C, Al, and Cu. (3.16)

Figure 3.16: (x, y)-vertex distribution of the K+K− tracks. All the events are within the target
region.
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Table 3.8 shows the number of events after x and y vertex cut is applied (No event comes from other
than target area).

Table 3.8: Number of the events after x and y vertex cut
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 267 232 223 182 204 239 190 176
3 8 101 6 1 5 3 5 7

Sum 275 242 229 183 209 242 195 183

3.4.7 Invariant mass

The events of φ photo-production are identified by the K+K− invariant mass distribution. Since
momenta of kaons were measured, K+K− invariant mass mK+K− is described as

m2
K+K− =

µq
(mK+)2 + |~pK+ |2 +

q
(mK−)

2 + |~pK− |2
¶2
− |~pK+ + ~pK− |2 . (3.17)

where mK stands for the kaon mass (0.493677 GeV [49]), pK+ and pK− are the measured K
+ and K−

momenta with a energy loss correction, respectively. Figure 3.17 shows the K+K− invariant mass
distributions.

The cut condition 1005≤ mK+K− <1035 MeV is required for the K+K− invariant mass. Note
that the mass and width of the φ meson in free space is 1019.456± 0.020 MeV and 4.26± 0.05 MeV,

Figure 3.17: K+K− invariant mass distributions. The φ meson peaks are observed clearly.
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respectively [49].
Table 3.9 shows the number of events after the invariant mass cut is applied.

Table 3.9: Number of the events after the invariant mass cut
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 229 197 182 148 165 191 157 143
3 6 8 2 1 3 1 3 5

Sum 235 205 184 149 168 192 160 148

3.4.8 Tagger hit

When the number of tagger hits are greater than 1, some treatment is needed to determine incident
γ energies. As for the events with two tagger hits, if two measured γ energies are close, the incident
γ energy Eγ can be determined just averaging as

Eγ =
1

2
(E(1)γ + E(2)γ ), (3.18)

where E
(1)
γ and E

(2)
γ are the incident γ energy candidates corresponding to the first and second tagger

hits. If the target is a proton at rest, Eγ can be calculated analytically from the K+K− track

Figure 3.18: Difference between Eγ and E
KK
γ

information assuming elastic φ photo-production on the proton at rest as

EKKγ =
2mpEKK −m2

KK

2(mp − EKK + pKKz )
, (3.19)

where mp is a proton mass, and mKK , EKK , and p
KK
z stand for invariant mass, total energy, and z-

component of the momentum for K+K− system. Figure 3.18 shows the difference between measured
Eγ and calculated E

KK
γ for single tagger hit events. The r.m.s. of the

¯̄̄
EKKγ − Eγ

¯̄̄
distributions are
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0.077, 0.075, 0.090, and 0.091 for each nuclear target. The distributions have larger width (r.m.s.∼0.08
GeV/c), this is because the target is not a proton at rest and the calculated EKKγ is smeared due
to the Fermi motion. While Figure 3.19 shows the difference of two measured γ energies for the two

Figure 3.19: Difference of measured γ energies

tagger hit events. The r.m.s. of the
¯̄̄
E
(2)
γ − 1

2

³
E
(1)
γ + E

(2)
γ

´¯̄̄
or
¯̄̄
E
(1)
γ − 1

2

³
E
(1)
γ + E

(2)
γ

´¯̄̄
distributions

are 0.038, 0.037, 0.045, and 0.046 for each nuclear target. The number of tagger hits for φ→ K+K−

Table 3.10: Number of tagger hits for φ→ K+K− events.
#Tagger Hits 6Li+start counter C+start counter Al+start counter Cu+start counter

0 25 (5.3± 1.0%) 18 (4.8± 1.1%) 25 (6.3± 1.2%) 28 (6.7± 1.2%)
1 374 (78.6± 1.9%) 296(79.4± 2.1%) 317(79.6± 2.0%) 327 (78.6± 2.0%)
2 (∆Eγ < 0.2) 69 (14.5± 1.6%) 51(13.7± 1.8%) 47(11.8± 1.6%) 54 (13.0± 1.6%)
others 8 (1.7± 0.6%) 8 (2.1± 0.8%) 9 (2.3± 0.7%) 7 (1.7± 0.6%)
Sum 476 373 398 416

events without the vertex cuts are shown in Table 3.4.8. The fraction of single tagger hit events is
the same for each target. In order to obtain good resolution on missing mass or t value, only single
tagger hit events were selected. Table 3.11 shows the number of events after the tagger hit cut is
applied.

Table 3.11: Number of the events after the tagger hit cut
Li C Al Cu

#Tracks
Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

2 184 154 143 122 135 148 122 111
3 4 6 2 0 2 1 1 4

Sum 188 160 145 122 137 149 123 115
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3.4.9 Cut statistics

Table 3.12 shows the number of events after the various cuts discussed above have been applied
together with rejection factors. The rejection factor is defined as

Rejection Factor =
#Events Before the Cut

#Events After the Cut
(3.20)

All the cuts discussed in this section is called as standard φ cut.

Table 3.12: Cut statistics. Each cell shows the number of survived events in the cut together with
the rejection factor in the parentheses.

Li C Al Cu
Cut

Vert. Horz. Vert. Horz. Vert. Horz. Vert. Horz.

Hadron Trigger 4508781 3540759 6021008 3934454 8767596 8395717 15260359 12536868
Analyzed 2679802 2135505 3450125 2326146 4584486 4641570 8028560 7544448

(1.68) (1.66) (1.75) (1.69) (1.91) (1.81) (1.90) (1.66)
Particle Identification 505 446 478 356 429 483 487 471

(5310) (4790) (7220) (6530) (10690) (9610) (16490) (16020)
Good Track 310 266 263 212 242 274 277 263

(1.63) (1.68) (1.82) (1.68) (1.77) (1.76) (1.76) (1.79)
Closest Distance 308 259 255 206 233 266 267 258

(1.01) (1.03) (1.03) (1.03) (1.04) (1.03) (1.04) (1.02)
z-vertex 275 242 229 183 209 242 195 183

(1.12) (1.07) (1.11) (1.13) (1.11) (1.10) (1.37) (1.41)
(x, y)-vertex 275 242 229 183 209 242 195 183

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Invariant Mass 235 205 184 149 168 192 160 148

(1.17) (1.18) (1.25) (1.23) (1.24) (1.26) (1.22) (1.24)
Tagger Hit 188 160 145 122 137 149 123 115

(1.25) (1.28) (1.27) (1.22) (1.23) (1.20) (1.30) (1.29)

Analyzed φ Events 188 160 145 122 137 149 123 115

3.5 Observed φ mesons

3.5.1 Mass and width

The mass and width of φ meson is determined from the K+K− invariant mass shown in Figure 3.17.
The clear φ meson peaks are observed for all the targets at 1.02 GeV/c2 with small number of
background events. The shape of these background distributions is assumed to be the same as the
KK invariant mass distribution for non-resonant KK production, which is calculated in the Monte
Carlo simulation for the three body phase space of the reaction γN → K+K−N . Figure 3.20 shows
the KK invariant mass distribution for the non-resonant KK production. The fitting by means of
the maximum likelihood method [69] with a sum of a Voigt function, or a Gaussian convoluted Breit-
Wigner (Lorentzian) function, and the non-resonant K+K− background distribution is made. The
fitting function is described as

M(x) = cV (x) + bB(x) = cΓ/2

Z ∞
0
exp(−αt2 − βt) cos γt dt+ bB(x), (3.21)
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Figure 3.20: K+K− invariant mass distributions for non-resonant K+K− production in the MC
simulation

where α = σ2/2, β = Γ/2, and γ = µG + µL − x = m − x discussed in Appendix G.2, and the full
width of φ meson Γ is fixed to be the PDG value of 4.26 MeV [49]. B(x) stands for KK invariant

Figure 3.21: Fitting with σ as a free parameter in the real data
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Figure 3.22: Fitting with σ as a free parameter in the MC simulation

mass distribution for the non-resonant K+K− production. The fitting region is between 1.00 and
1.06 GeV/c2. Figures 3.21, 3.22 show K+K− invariant mass distributions with the standard cut
except for the invariant mass one in the real data, and in the MC simulation, respectively. Table 3.13
shows the fitting results. The centroid m and Gaussian width σ (resolution) is consistent for each

Table 3.13: Comparison of the fitting parameters with σ as a free one
Target c m σ b

Li (real) 110.6±6.3 1.0197±0.0002 0.0013±0.0004 0.0015±0.0006
C (real) 84.0±5.8 1.0201±0.0003 0.0020±0.0005 0.0019±0.0008
Al (real) 87.9±5.9 1.0195±0.0003 0.0023±0.0004 0.0034±0.0009
Cu (real) 72.6±5.4 1.0193±0.0003 0.0024±0.0004 0.0026±0.0008
Li (MC) 140.7±3.1×10+1 1.0195±0.0001 0.0016±0.0001 0.0000±0.0005
C (MC) 133.2±2.3×10+1 1.0195±0.0001 0.0019±0.0001 0.0000±0.0008
Al (MC) 129.1±2.8×10+1 1.0194±0.0001 0.0023±0.0001 0.0000±0.0006
Cu (MC) 139.8±2.1×10+1 1.0194±0.0001 0.0021±0.0001 0.0000±0.0004

target between the real data and the MC simulation. The differences of Gaussian widths σ for different
targets are thought to be explained by multiple scattering in the target material and so on, and are
reproduced very well in the MC simulation. Treating Γ as a free parameter instead of σ provides an
important test. The fitting is also made under the condition that the resolution Gaussian width σ is
fixed to be the predicted values 1.6, 1.9, 2.3, and 2.1 MeV for Li, C, Al, and Cu, respectively, which
are obtained by the previous fitting to the MC simulation. In this case, the full width of φ meson Γ
is a free parameter. The fitting results of the natural width Γ are 3.4± 0.4, 5.0± 0.7, 4.9± 0.8, and
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Figure 3.23: Fitting with Γ as a free parameter in the real data

4.9± 0.8 MeV for Li, C, Al, and Cu, respectively. The values of the mass and width are consistent
with the nominal mass and full width of φ meson in free space within error bars1. No significant

Table 3.14: Fitting parameters with Γ as a free parameter
Target c m Γ b

Li (real) 139.5±15.9 1.0197±0.0002 0.0034±0.0004 0.0015±0.0007
C (real) 73.7± 9.6 1.0201±0.0003 0.0050±0.0007 0.0013±0.0009
Al (real) 79.1±11.0 1.0195±0.0003 0.0049±0.0008 0.0029±0.0008
Cu (real) 65.0± 9.5 1.0193±0.0003 0.0049±0.0008 0.0023±0.0009

modification in nuclei can be observed in this situation. This is because the momentum of observed φ
mesons ranges from 1.0 to 2.2 GeV discussed in Subsection 3.5.3, and almost all the φ mesons decay
outside the nucleus (>∼ 95%).

The Λ is observed in π−p invariant mass distributions. The observed width of the peak corresponds
to the overall resolution of the spectrometer including the energy loss and multiple scattering effects
because this decay is weak one and its natural width is very narrow. Figure 3.24 shows the invariant
mass distribution of π−p, and the lines are the best fit results by applying a Gaussian with a linear
background. Table 3.15 shows the fitting results for the position and width of the peaks for each
target with the PDG peak position [49]. No significant difference can be observed in the width of
Λ → π−p peak, this shows the difference of the energy loss and multiple scattering effects in the
target material for various targets is small as expected.

1Note that the mass and width of the φ meson in free space is 1019.456± 0.020 MeV and 4.26± 0.05 MeV, respec-
tively [49].
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Figure 3.24: π−p invariant mass distribution. Clear Λ peaks are observed for all the targets.

Table 3.15: Fitting results for the position and width of the Λ→ π−p peak

target peak (MeV/c2) width (MeV/c2)

Li 1115.27 ±0.03 1.70±0.05
C 1115.10 ±0.04 1.60±0.05
Al 1115.07 ±0.03 1.74±0.05
Cu 1115.21 ±0.03 1.71±0.05
PDG 1115.683±0.006

3.5.2 Incident γ energy distribution

Figure 3.25 shows incident γ energy distributions for the events in which the φ meson is observed.
Red lines show the contribution of the non-resonant KK background events. The estimation of the
amount of background events is discussed in the Subsection 3.6.3. The φ meson yields monotonously
increase as the incident γ energy increases. Averaged incident γ energy is hEγi = 2.2 GeV for each
nuclear target.

3.5.3 Momentum distribution of φ mesons

Figure 3.26 shows the momentum distribution of the φ mesons. Red lines show the contribution
of the non-resonant KK background events. The averaged momentum of the detected φ mesons is
hPφi = 1.8 GeV for each nuclear target.
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Figure 3.25: Incident γ energy distribution. The red lines show the estimated non-resonant K+K−

background events. Averaged incident γ energy is hEγi = 2.2 GeV.

Figure 3.26: Momentum distribution of φ mesons. The red lines show the estimated non-resonant
K+K− background events. Averaged momentum is hPφi = 1.8 GeV.
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3.5.4 t̃ distribution

Near the threshold of φ photo-production, the minimum momentum transfer square for the incoher-
ent production (production on the nucleon) varies drastically as the incident γ energy Eγ changes.
Figure 3.27 shows the limit of the momentum transfer square |t| as a function of incident γ energy Eγ .

Figure 3.27: Limit of |t| as a function of Eγ . The left panel shows |t|min and |t|max for the proton and
the nuclear targets used, and the right panel shows the zoomed one in |t| = 0.0—0.4 GeV2.

Since the |t|min varies drastically as Eγ changes, the variable t̃ = |t|− |t|min is introduced. Figure 3.28
shows t̃ distribution without any acceptance correction. Here |t|min is obtained from the incident γ
energy and the reaction target is assumed to be a nucleon at rest. The fitting with an exponential
function is made, and the fitting region is between t = 0.0 and 0.5 GeV2. The slopes are similar
values −8.0 ± 0.6, −8.5 ± 0.7, −7.2 ± 0.6, and −8.2 ± 0.7 for Li, C, Al, and Cu, respectively. This
implies the incoherent process is dominant for all the targets. In order to suppress the acceptance
difference between vertically and horizontally polarized γ beam data, normalized yields are obtained
by averaging vertically and horizontally polarized photon data as

R =
1

2

(
NV
φ

ηVDAQN
V
γ

+
NH
φ

ηHDAQN
H
γ

)
(3.22)

Figure 3.29 shows normalized t̃ distribution. Figure 3.30 shows the acceptance with respect to t̃ for
the incoherent process of each nuclear target, where |t|min is obtained by assuming that the target is
a nucleon at rest. No significant difference is seen in the positive t̃ region for all the targets.

Figure 3.31 shows acceptance corrected t̃ distribution. Since the acceptance is determined averag-
ing in a finite region, observed t̃ distributions by the Monte Carlo simulation is adjusted to real ones.
The fitting to the exponential function

dσ

dt̃
= C exp

¡−bt̃ ¢ (3.23)

is applied for each target, and the fitting region is t̃ =0.00 and 0.50. The fitting error of the slope is too
large, and the fitting the data combined for all the target is also applied. Figure 3.32 shows acceptance
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Figure 3.28: t̃ distribution. The distributions are fitted with an exponential function as shown in the
green lines. The red lines show the estimated non-resonant K+K− background events.

Figure 3.29: Normalized yield R as a function of t̃. The red lines show the estimated non-resonant
K+K− background events.
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Figure 3.30: Acceptance as a function of t̃

corrected t̃ distribution for the combined data of all the targets. The slope b = 3.4 ± 0.5 GeV−2 is
obtained for the combined data. The smallest t̃ region may have larger contribution of the coherent
production, thus the fitting with same function is also made in the t̃ region between 0.05 and 0.50.

Figure 3.31: Acceptance corrected yield as a function of t̃. The yield is fitted with an exponential
function as shown in the red lines.
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Figure 3.32: Acceptance corrected yield as a function of t̃

In this case b = 2.7 ± 0.6 GeV−2 is obtained. The fitted slope does not significantly change even if
small t̃ events are excluded, and contribution of the coherent production in small t̃ region seems small.
Table 3.16 shows the summary of the obtained slope parameters b in the t̃ distribution. These slope

Table 3.16: Summary of b parameters in the t̃ distribution
Fitting region t̃ (GeV2) 0.00—0.50 0.05—0.50

Li 3.6± 0.9 2.7± 1.2
C 4.5± 1.0 4.0± 1.2
Al 3.1± 0.9 2.5± 1.2
Cu 4.5± 1.0 4.9± 1.7
All 3.4± 0.5 2.7± 0.6

parameters are consistent with the case of φ photo-production on the proton, b = 2.1 ∼ 3.0 GeV−2
at SAPHIR [70] or b = 3.38± 0.23 GeV−2 at LEPS [57]. This shows incoherent process is dominant
in this incident γ energy region even at small scattering angles.
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3.5.5 Scattering angle of K+ in the helicity frame

When a vector meson decays into two spinless particles, angular distribution for one of the decay
particle of the vector mesons are expressed as

W (cos θ,φ) =
3

4π

½
1

2
(ρ−1−1 + ρ11) sin

2 θ + ρ00 cos
2 θ

+
1√
2
(−Reρ10 +Reρ−10) sin 2θ cosφ

+
1√
2
(−Imρ10 + Imρ−10) sin 2θ sinφ

−Reρ1−1 sin2 θ cosφ+ Imρ1−1 sin2 θ cos 2φ
¾
,

(3.24)

Figure 3.33: Scattering angle of K+ in the helicity frame for the vertically polarized photon data.
The red lines show the estimated non-resonant K+K− background events.
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where ρ stands for the spin density matrix of the φ meson. If s-channel helicity is conserved, non
helicity conserving amplitudes are 0. Decay angular distribution for the vector meson production by
the linearly polarized photons with the polarization Pγ becomes

W (cos θ,φ,Φ) =
3

π
(1− cos2 θ)

½
1

2
+ Pγρ

1
1−1 cos 2(φ− Φ)

¾
, (3.25)

where Φ stands for the polarization vector of the vector meson in the rest frame of the vector meson.
Pure natural and unnatural parity exchanges give ρ11−1 = +1/2 and −1/2, respectively.

The helicity frame is basically the rest fame of the φ meson (Vrest), and the frame velocity in the
laboratory frame is described as

~β = ~Pφ/Eφ. (3.26)

Figure 3.34: Scattering angle of K+ in the helicity frame for the horizontally polarized photon data.
The red lines show the estimated non-resonant K+K− background events.
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Momenta in the helicity frame can be obtained easily by the Lorentz transform, although the directions
of the axes are different from those in the laboratory frame. In the helicity frame, x, y, and z axes
are defined so that ~z is opposite to the outgoing recoil nucleon in Vrest, and that ~y is normal to the
production plane in Vrest. The unit vectors of the x-, y-, z-axes x̂, ŷ, ẑ are described as

ẑ ∝ −~Pp,
ŷ ∝ ~Pγ × ẑ, and
x̂ ∝ ŷ × ẑ,

(3.27)

where ~Pγ and ~Pp are given in the rest frame of the produced φ meson. Therefore scattering angle of
the decay particle K+ in the helicity frame is given

cos θ = π̂ · ẑ,
cosφ =

ŷ(ẑ · π̂)
|ẑ · π̂| ,

sinφ =
x̂(ẑ · π̂)
|ẑ · π̂| ,

(3.28)

where ~π stands for the flight vector of K+ in Vrest. Figure 3.33 and 3.34 shows scattering angles of
K+ in the helicity frame, where the target is assumed to be proton at rest and additional condition
|t|< 0.2 GeV2 is required because the detector acceptance is not biased so much in this |t| region.
Figure 3.35 shows those for the liquid hydrogen target (LH2) with the same condition except for

Figure 3.35: Scattering angle of K+ in the helicity frame for LH2. The amplitude of the azimuthal
scattering angle of K+ for LH2 is smaller than that for the nuclear target.

z-vertex, and which is required as

−1000. ≤ z < −900, (3.29)

where z stands for z-vertex position. The amplitude of the azimuthal angle of K+ for nuclear target
is larger than that for LH2. According to the OZI rule, the diffractive Pomeron exchange is domi-
nant in φ photo-production on the proton [71, 72, 73, 74]. Diffractive contributions are accompanied
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by the non-diffractive channels associated with the unnatural parity exchange [70]. For coherent φ
photo-production at forward angles, the isovector π-exchange amplitude is strongly suppressed [73].
Figure 3.36 shows the possible reaction mechanisms. The contribution of the unnatural parity ex-

Figure 3.36: Reaction mechanism of the diffractive φ photo-production on the nucleon. The diffractive
Pomeron exchange is dominant, and are accompanied by the non-diffractive channels associated with
the unnatural parity exchange (π/η).

change might be canceled out between production on the proton and that on the neutron in the
nucleus. This implies that coherent φ photo-production exists.
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3.6 Background events

The candidate of the background events are

• contamination of the start counter events,
• contamination of the events with particle mis-identification, and
• non resonant K+K− events.

In this section, these background events are discussed.

3.6.1 Contamination of the start counter events

The contamination of the start counter in the z-vertex target region is estimated in this subsection.
The z-vertex resolution depends on the opening angle of K+K− tracks, which is discussed in Ap-
pendix C.1.3. The real numbers of φ events in the target and in the start counter regions are defined
as nt, ns, respectively. The Nt and Ns stand for the measured numbers of φ events in the target
and in the start counter regions, respectively. The probability that the target φ events are measured

Table 3.17: Probabilities of the contamination due to the vertex cut. The Rt and Rs stand for
the probability that the target φ events are measured within the target region, and that the start
counter φ events are measured within the start counter region, respectively. The Nt and Ns denote
the measured numbers of φ events in the target and in the start counter regions, respectively.

Li COpening
Angle θ12 Nt Ns Rt Rs Nt Ns Rt Rs
0.00—0.05 1 0 89.29±5.85 69.47±4.02 1 0 88.00±6.50 81.68±3.38
0.05—0.10 6 0 93.75±1.83 85.09±1.46 5 0 95.12±1.68 96.15±0.79
0.10—0.15 20 0 98.49±0.57 93.41±0.73 11 0 99.56±0.31 98.96±0.30
0.15—0.20 55 1 99.52±0.20 96.22±0.45 43 3 99.76±0.14 99.15±0.22
0.20—0.25 150 14 99.63±0.10 99.11±0.16 128 10 99.70±0.10 99.89±0.06
0.25—0.30 137 13 99.68±0.08 99.28±0.14 97 13 99.91±0.05 99.77±0.08
0.30—0.35 39 3 99.57±0.14 99.55±0.17 34 9 99.82±0.09 99.87±0.09
0.35—0.40 10 0 99.23±0.29 99.64±0.26 12 0 99.77±0.16 100.00±0.00
0.40—0.45 2 0 99.41±0.41 99.03±0.68 4 0 100.00±0.00 100.00±0.00
0.45—0.50 3 0 98.36±1.15 98.94±1.06 1 0 100.00±0.00 100.00±0.00

Al CuOpening
Angle θ12 Nt Ns Rt Rs Nt Ns Rt Rs
0.00—0.05 1 0 68.18±9.93 81.68±3.38 1 0 69.70±8.00 81.68±3.38
0.05—0.10 5 1 93.55±1.80 96.15±0.79 6 1 98.13±0.93 96.15±0.79
0.10—0.15 25 3 99.17±0.41 98.96±0.30 15 4 99.44±0.32 98.96±0.30
0.15—0.20 39 4 99.70±0.15 99.15±0.22 36 9 99.53±0.19 99.15±0.22
0.20—0.25 113 14 99.94±0.04 99.89±0.06 96 35 99.89±0.06 99.89±0.06
0.25—0.30 108 7 99.88±0.05 99.77±0.08 103 36 99.91±0.04 99.77±0.08
0.30—0.35 42 5 99.87±0.08 99.87±0.09 31 15 99.75±0.10 99.87±0.09
0.35—0.40 10 1 99.77±0.16 100.00±0.00 10 2 99.79±0.15 100.00±0.00
0.40—0.45 3 0 99.11±0.52 100.00±0.00 2 0 99.15±0.49 100.00±0.00
0.45—0.50 1 0 100.00±0.00 100.00±0.00 0 0 99.30±0.70 100.00±0.00
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within the target region and that the start counter φ events are measured within the start counter
region are denoted by Rt and Rs, respectively. Let us assume the probability that the target φ events
are measured in the start counter region is 1−Rt, and that the start counter φ events are measured
in the target region is 1−Rs. The following relations are valid:

Nt = Rtnt + (1−Rs)ns, and
Ns = (1−Rt)nt +Rsns. (3.30)

The contamination of the start counter φ events in the target region Nc is estimated as

Nc = Nt −Rtnt. (3.31)

The number of target φ events can be estimated from Eq. (3.30) as

nt =
1

Rt +Rs − 1 {Rs(Nt +Ns)−Ns} . (3.32)

The Rt and Rs have been determined by the MC simulation in each K
+K− opening angle region.

The target region is defined as the same as described in Subsection 3.4.6. The start counter z-vertex
region is defined as

−863. ≤ vtz(ivtx) < −800. for Li
−872. ≤ vtz(ivtx) < −800. for C, Al, and Cu. (3.33)

Table 3.17 shows the variables Nt, Ns, Rt, and Rs for each K
+K− opening angle region. The number

of contaminated start counter events are obtained as

Li 0.10+0.96−0.10,

C 0.04+0.38−0.04,

Al 0.01+0.45−0.01, and

Cu 0.19+0.37−0.19.

The contamination of the start counter φ events in the target region is negligibly small.

3.6.2 Particle mis-identification

The fraction that pions are identified as kaons has been estimated for each momentum region according
to the momentum dependent mass resolution described in Eq. (3.12). Figure 3.37 shows the fraction
of particle mis-identification. The fraction of particle mis-identification is 0.032 at maximum since the
momentum of charged kaons ranges from 0.6 to 1.2 GeV as shown in Figure C.1 in Appendix C.1.1.
The number of π+K− events are 137, 126, 154, and 234 for Li, C, Al, and Cu, respectively. The 24,
20, 25, and 57 π+K− events appear in the φ peak region of the K+K− invariant mass distribution
if π+ is identified as K+, respectively. Then, the number of π+K− events identified as K+K− is
estimated to be 0.7, 0.6, 0.8, and 1.8 in the φ peak region at maximum. The number of K+π− events
are 689, 575, 656, and 848. The 111, 92, 107, and 132 K+π− events appear in the φ peak region of
the K+K− invariant mass distribution if π− is identified as K−, respectively. Then, the number of
K+π− events identified as K+K− is estimated to be 3.5, 2.9, 3.4, and 4.2 in the φ peak region at
maximum. On the other hand, the number of π+π− events are 11339, 10960, 14248, and 22903. The
4078, 4051, 5228, and 8157 π+π− events appear in the φ peak region of the K+K− invariant mass
distribution if π+ and π− are identified as K+ and K−, respectively. Then, the number of π+π−

events identified as K+K− is estimated to be 4.0, 4.0, 5.2, and 8.0 in the φ peak region at maximum.
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Figure 3.37: Fraction of pions identified as kaon. The fraction increases as the momentum of the pion
increases.

The contamination of the π+π−,K+π−, or π+K− events are negligibly small. because an averaged
value for the fraction of particle mis-identification is much smaller than 0.0315, and the estimated
contamination should be much smaller (The electron or positron tracks are included for the pion
tracks in this subsection. The fraction of particle mis-identification is always smaller for electrons or
positrons than that for pions).

Since the time of flight is mis-measured by 1.966 nsec longer or shorter for the accidental coinci-
dence charged particles associate with the successive RF bunches, the mass square of these particles
are wrong. The inclined loci in Figure 3.11 in Subsection 3.4.3 show the mis-measured events. When
the events with number of tracks are larger than 1 are selected, these loci disappear as shown in
Figure 3.12 in Subsection 3.4.3. The proton accidental coincidence tracks are still observed in heavier
targets, but contamination of these tracks appear in the higher momentum than that of charged kaons
decaying from φ mesons as discussed in Appendix C.1.1.

3.6.3 Non resonant K+K− events

To estimate the K+K− events in the φ peak of the invariant mass distributions, the non-resonant
K+K− events are generated by the MC simulation assuming the three-body phase space of the
reaction γN→K+K−N . Figure 3.38 shows the K+K− invariant mass distribution for non-resonant
K+K− production. The contribution of the non-resonant K+K− production in the φ peak region
has been estimated as

#N(1.005 ≤ mKK < 1.035)real

= #N(1.050 ≤ mKK < 1.100)real × #N(1.005 ≤ mKK < 1.035)MC
#N(1.050 ≤ mKK < 1.100)MC

. (3.34)

As a result, number of φ mesons has been obtained as

Nφ = N(1.005 ≤ m < 1.035)−N(1.005 ≤ mKK < 1.035). (3.35)

The background K+K− contribution has been subtracted for each target for each direction of the
polarity.
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Figure 3.38: K+K− invariant mass distribution for non-resonantKK production. The red histograms
shows the events which pass the standard φ cut (1.005 ≤ mKK < 1.035 GeV), and the green ones
show the events used in the background estimation.

3.7 Normalization

In order to extract φ-N total cross section, the mass number dependence of the φ meson yields for
various target nuclei is needed. The effective number of tagger hits, the number of target nuclei, and
other correction factors for the normalization are estimated.

3.7.1 Effective number of tagger hits

The number of tagger hits is counted by a scaler module. But the counting efficiency depends on the
tagger rate because of a finite width of the tagger signals to the scaler. Here the correction of the
tagger counts by the scaler number is discussed.

The width of a input signal to the scaler module is set to 100 nsec and scaler module needs 5 nsec
interval in order to identify two signals. The accidental coincidence rate αtagger is considered to be

αtagger = [Tagger Rate]× [Dead Time (105 nsec)], (3.36)

assuming the signals have a Poisson distribution and αtagger ¿ 1.
The accidental coincidence rate is also estimated from the TDC distributions of the tagger plastic

scintillators [75] shown in Figure 3.39, in which the timing associated with the true events is calibrated
to be zero. In order to select clean hits, the following conditions are required.

AUi > 100,
ADi > 100,
|TUij − [True Timing]| < 10, and
|TDij − [True Timing]| < 10,

(3.37)

where AU , AD stand for the ADC and TU , TD denote the TDC of the upstream and downstream
plastic scintillators, respectively. The subscript i, j means the plastic scintillator number, and the
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Figure 3.39: TDC distributions of tagger plastic scintillator

index of the hit, respectively. Background seems to be flat except for the region close to the true
timing. The accidental coincidence rate αdistribution is estimated from the TDC distribution by

αdistribution =
Counts (upstream)[105 ns] + Counts (downstream)[105 ns]

Counts (true signal)[−10 ∼ +10] , (3.38)

where Count[105 nsec] is estimated as number of counts in the region −840 ∼ −420 is normalized to
the 105 nsec (0.5 nsec/channel).

In the experiment, the storage ring was operated with the two filling patterns, and Table 3.18
shows the information on the filling pattern of the electron injection beam. Figure 3.40 shows the

Table 3.18: Filling pattern of the electron injection beam
Cycle Period Filling Pattern

9 Nov 8 10:00—14 10:00 multi-bunch
9 Nov 15 10:00—20 15:00 1 bunch (1.5 mA)+multi-bunch

comparison of the accidental coincidence rate estimated by the tagger rate with that by the TDC
distributions for two filling patterns. The slope of the correlation is slightly smaller than 1, which
depends on the operated filling patterns.

The accidental coincidence rate estimated by the TDC distributions is adopted since the tagger
plastic scintillator signals may not have a Poisson distribution according to the filling pattern. The
relation of the accidental coincidence rate by the TDC distributions to that by the tagger rate is
assumed as

αdistribution = cαtagger (3.39)

The parameter c is determined by fitting the correlation shown in Figure 3.39. The fitting results are
summarized in Table 3.19.

Table 3.19: Correction parameter for accidental coincidence rate
Period c

Nov 8 10:00—14 10:00 0.884± 0.012
Nov 15 10:00—20 15:00 0.915± 0.013
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Figure 3.40: Comparison of the accidental coincidence rate by the tagger rate and by the TDC
distributions.

The number of tagger counts are corrected by using the accidental coincidence rate as

[True Tag Counts] =
[Measured Tag Counts]

1− αDistribution
=
[Measured Tag Counts]

1− cαTagger
=

[Measured Tag Counts]

1− c× [Tagger Rate]× [Dead Time]

The correction is made to estimate the effective tagger counts for every ten thousand buffers (C10000)
or for every buffer (C1). The relation of the accidental coincidence rate by the TDC distributions to
that by the tagger rate is assumed to be expressed by the quadratic, which gives the correction factor
to the tagger counts R = [true tag count]/[measured tag count] [75] as

R = 0.999 + 0.936× 10−4 · x+ 0.238× 10−7 · x2 for multi− bunch, and
R = 1.000 + 0.110× 10−3 · x+ 0.341× 10−7 · x2 for 1 bunch (1.5 mA) +multi− bunch, (3.40)

where x is tagger rate (cps). This correction is also done for every ten thousand buffers (K10000) or
for every buffer (K1).

Table 3.20 shows the effective tagger counts with the tagger rate corrections. The differences
between C1 and C10000, between K1 and K10000, and between C and K are less than ∼ 0.1%, less
than ∼ 0.5%, and ∼ 1%, respectively. All the differences are small. K1 is adopted for the effective
tagger counts.
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Table 3.20: Effective photon counts with correction
Target Polarity Simple Counts C1 C10000 K1 K10000
Li Vert. 3.685× 1010 3.969× 1010 3.968× 1010 4.001× 1010 4.020× 1010
Li Horz. 2.951× 1010 3.130× 1010 3.129× 1010 3.150× 1010 3.156× 1010
C Vert. 3.876× 1010 4.171× 1010 4.171× 1010 4.219× 1010 4.237× 1010
C Horz. 2.567× 1010 2.726× 1010 2.725× 1010 2.752× 1010 2.757× 1010
Al Vert. 4.628× 1010 4.978× 1010 4.977× 1010 5.037× 1010 5.054× 1010
Al Horz. 4.408× 1010 4.680× 1010 4.679× 1010 4.719× 1010 4.732× 1010
Cu Vert. 1.184× 1011 1.274× 1011 1.274× 1011 1.288× 1011 1.293× 1011
Cu Horz. 9.737× 1011 1.034× 1011 1.033× 1011 1.043× 1011 1.046× 1011

3.7.2 Number of target nuclei

The number of target nuclei in a unit area is calculated as

ξ [cm] × ρ [g/cm3]

A [g/mol]
×NA [mol−1] = NAρξ

A
[cm−2] . (3.41)

where A, ξ [cm], and ρ [g/cm3] is mass number, thickness, and density, respectively, and NA =
6.0221367(36) × 1023 [mol−1] stands for the Avogadro number. Table 3.21 shows the properties of
nuclear targets used and the number of nuclei in a unit area2.

Table 3.21: Properties of the nuclear targets used. The Li target was a block, and each of the other
three targets was divided into three pieces.

Target Mass Number A Thickness ξ [cm] Density ρ [g/cm3] #Nuclei in a Unit Area [cm−2]
Li 6.941 10.0 0.534 4.63×1023
C 12.011 3×1.20 1.730 3.12×1023
Al 26.982 3×0.80 2.702 1.45×1023
Cu 63.546 3×0.10 8.92 2.54×1022

3.7.3 Attenuation of the photon flux in the target material

The number of effective tagger counts discussed in Subsection 3.7.1 is that of induced photon counts
by backward Compton scattering. Some induced photons are lost by converting e+e− pairs and so
on until they reach the target, and some are lost during the flight in the target material itself. The
former is common for all the nuclear targets, thus only the latter is discussed in this subsection.

The photon flux is attenuated during passing through the material, and the attenuation of photon
flux is described as

Nγ = N
0
γ exp{−(µ/ρ)x} = exp{−µt}, (3.42)

where x is a travel distance defined as mass per a unit area, and µ/ρ stands for the mass attenuation
coefficient. The length x is obtained from the density ρ and the ordinal length t and described as

2The lithium target used had been thought to be 6Li isotope. Its mixture of 6Li and 7Li has been investigated by
means of the accelerator mass spectrometry (AMS) at Tandem van de Graaff accelerator Laboratory at Kyoto University
– spattering, accelerating, and analyzing the mass. It has been found to have a natural mixture [76]. Later, it has
been found to be natural one by checking the lithium at KEK where it came from [77].
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x = ρt. Mass attenuation coefficient µ/ρ can be obtained numerically on the web page [78]. The
photon flux at the start counter is obtained by multiplying ηatt described in the equation (3.43) to
the effective nucleon number.

ηatt(StartCounter) = exp(−x0), (3.43)

where x0 = (µ/ρ)x is the target thickness in the unit length through which the photon intensity
becomes 1/e. In order to obtain the averaged photon flux in the target, the averaged attenuation
factor should be multiplied:

ηatt(Target) =
1

x0

Z x0

0
exp(−t)dt = 1

x0
(1− exp(−x0)) . (3.44)

Table 3.22 shows the summary of the mass attenuation coefficient µ/ρ, ηatt(StartCounter), and
ηatt(Target).

Table 3.22: Attenuation of the photon flux in the target. The Li target was a block, and each of the
other three targets was divided into three pieces.

Target µ/ρ [cm2/g] Thickness x0 ηatt(StartCounter) ηatt(Target)

Li 9.06× 10−3 0.048 0.953 0.976
C 1.74× 10−2 0.108 0.897 0.948
Al 3.10× 10−2 0.201 0.818 0.906
Cu 5.83× 10−2 0.156 0.856 0.926

3.7.4 Efficiency of the data taking system

Efficiency of the data taking system ηDAQ (live time) is estimated from the number of ungated
triggers (trigger requests) and that of gated triggers (trigger accepts) as

ηDAQ =
#gated triggers

#ungated triggers
(3.45)

Figure 3.41 shows the run dependence of ηDAQ. One run is divided into lumps of every 10,000 buffers.
The ηDAQ is very stable for all the lumps. Table 3.23 shows the averaged efficiency ηDAQ of all for
each target and each polarity.

Table 3.23: Averaged efficiency of the data taking system.
target polarity ηDAQ
Li Vert. 0.91243±0.00012
Li Horz. 0.93048±0.00012
C Vert. 0.88923±0.00011
C Horz. 0.90854±0.00013
Al Vert. 0.86201±0.00010
Al Horz. 0.88497±0.00010
Cu Vert. 0.90245±0.00007
Cu Horz. 0.91928±0.00007



3.7. NORMALIZATION 71

Figure 3.41: Efficiency of data taking system. The V denotes the efficiencies for the vertically polarized
photon data, and the H denotes those for the horizontally polarized photon data.

3.7.5 Efficiency of the analyzer

The LEPSana stops analyzing the events when the number of SVTX clusters, DC clusters, or track
candidates exceeds maximum set in it. The hits due to the accidental coincidence events or the δ-rays
enlarge these numbers and make them exceed maximum. These hits are considered to happen at
random. Figure 3.42 shows the run dependence of the fraction of the events that can not be analyzed.
One run is also divided into lumps of every 10,000 buffers. The fraction is very stable and almost
constant for all the lumps. Since the fraction is very small, the rejection of the events that cannot be
analyzed does not affect final results even if those hits do not happen at random. The efficiency of
the analyzer ηana is defined as

ηana = 1− #Events That Can Not Be Analyzed
#Events

(3.46)

Table 3.24 summarizes the averaged efficiency ηana of all for each target each polarity.
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Figure 3.42: Fraction of the events that cannot be analyzed. The V denotes the efficiencies for the
vertically polarized photon data, and the H denotes those for the horizontally polarized photon data.

Table 3.24: Averaged efficiency of the analyzer
target polarity ηana
Li Vert. 0.99913±0.00001
Li Horz. 0.99911±0.00002
C Vert. 0.99895±0.00001
C Horz. 0.99896±0.00002
Al Vert. 0.99867±0.00001
Al Horz. 0.99864±0.00001
Cu Vert. 0.99865±0.00001
Cu Horz. 0.99865±0.00001
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3.7.6 Geometrical acceptance

The geometrical acceptance of the LEPS spectrometer has been estimated by the MC simulation as

ηgeo =
#Observed φ

#Generated φ
. (3.47)

Table 3.25 shows the acceptance. The geometrical acceptance is estimated assuming that φ mesons

Table 3.25: Geometrical acceptance (ηgeo)

target Vert. Horz.

Li 5.13±0.08×10−2 6.55±0.09×10−2
C 5.02±0.08×10−2 6.46±0.09×10−2
Al 5.02±0.08×10−2 6.55±0.10×10−2
Cu 5.31±0.09×10−2 6.92±0.10×10−2

are produced with the natural parity exchange as described in Appendix B since Figures 3.33 and 3.34
in Subsection 3.5.5 seem to suggest that the natural parity exchange dominates. The difference of
the geometrical acceptance between vertically and horizontally polarized photon data caused by the
assumed decay asymmetry. The attenuation of the charged kaons are included in the geometrical
acceptance. The detail of estimation of the geometrical acceptance is discussed in Appendix C.2.1.

3.7.7 Yield for φ photo-production from nuclei

The normalized yield for the horizontally polarized photon beam YH and that for the vertically one
YV has been estimated as

Y H(A) =
NH
φ

ηHgeoη
H
DAQη

H
anaηattN

H
tagNτ

, and

Y V(A) =
NV
φ

ηVgeoη
V
DAQη

V
anaηattN

V
tagNτ

,

(3.48)

where H and V in the superscript of the variables shows the data for the horizontally or vertically
polarized one, and the variables denote:

Nφ: number of observed phi events after the background is subtracted,

Ntag: effective number of tagger hits,

Nτ : number of target nuclei in unit area,

ηgeo: geometrical acceptance,

ηDAQ: efficiency of data taking system,

ηana: efficiency of the analyzer, and

ηatt: attenuation of the photon flux in the target material,

which are discussed in this subsection and Subsection 3.6.3. The yield has been obtained by Y H and
Y V to suppress the difference acceptance due to the different direction of the polarity [57] as

Y (A) =
1

2

³
Y H(A) + Y V(A)

´
. (3.49)
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Figure 3.43 shows the A-dependence of the φ photo-production from nuclei. Fitting has been made
with the standard parameterization Y (A) = Y0A

α. The yield of all the φ events for each target
is found to be proportional to A0.63±0.05. The yield for each target and the fitting parameters are
summarized in Table 3.26.

Figure 3.43: A-dependence of the φ meson photo-production from nuclei. The data points are fitted
with the parameterization A0.63. The error bars for the data are statistical only.

Table 3.26: Fitting parameters for A-dependence for all the φ mesons. Each yield column shows the
yield of φ events in the first row, that for the estimated KK background in the second row, The Y0,
α, and χ2 columns show the fitting results and χ2 of the fitting with the function Y (A) = Y0A

α in
the first row, respectively.

Yield (Li) Yield (C) Yield (Al) Yield (Cu) Y0 α χ2

1.912± 0.112 2.419± 0.164 4.134± 0.276 7.553± 0.526 0.543± 0.076 0.625± 0.047 1.94
0.122±0.052 0.160±0.081 0.330±0.143 0.371±0.215



Chapter 4

φ-N total cross section

In this chapter, the subtraction of coherent φ photo-production and the determination of the φ-N
total cross section are discussed. The obtained results are compared with some theoretical predictions.

4.1 Determination of the φ-N total cross section

In order to determine σφN from the A-dependence of the φ photo-production yield, an optical model
of a Glauber-type multiple scattering theory for incoherent production is applied [48, 47], which is
described in Subsection 1.2. In this model, the production cross section from a nucleus, dσincA /dt, is
described as

dσincA
dt

= Aeff
dσN
dt
, (4.1)

where Aeff is the effective nucleon number and dσN/dt is the production cross section on the nucleon.
The Aeff for φ photo-production is expressed as a function of A, σγN , and σφN ;

Aeff(A,σγN ,σφN ) =
1

σφN − σγN
Z ³

e−σγNT (~b) − e−σφNT (~b)
´
d2b,

T (~b) = A

Z +∞

−∞
ρ(~b, z) dz,

(4.2)

where σγN stands for the total photon-nucleon cross section,~b denotes the impact vector of the incident
photon, and ρ is the nucleon density of the target nucleus. The effect of quasi-elastic collision between
a φmeson and a nucleon in the nucleus is not included in Equation (4.1) since the direction and energy
change of the outgoing φ meson is small because of the small direct φNN coupling [27]. Assuming
the same dσN/dt for the proton and for the neutron, σφN can be derived from the A-dependence of
the φ photo-production cross sections. In this case, the absolute values of dσincA /dt are not necessary.
The normalized number of events for φ photo-production from nuclei, defined by Equation (3.49) as
Y (A), is described by that for φ photo-production on the nucleon, YN , and Aeff :

Y (A) = Aeff(A,σγN , σφN ) · YN , (4.3)

because Y (A) is proportional to the differential cross section dσA/dt for the fixed t due to the same |t|
dependence as described in Subsection 3.5.4. The σγN is fixed to be 140 µb in the energy range from
1.5 to 2.4 GeV [49]. The nucleon density is given by normalizing the charge density distribution [81],
where the proton and neutron density distributions are assumed to have the same r-dependence,
which is described in Appendix F.3. Figure 4.1 shows Aeff as a function of σφN . The same branching
ratio of the φ → K+K− process for each target nucleus is used since almost all the φ mesons decay
outside the nucleus. The measured Y (A) values are fitted by Equation (4.3) with σφN and YN as free
parameters.
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Figure 4.1: Aeff as a function of σφN

4.2 Incoherent and coherent φ photo-production

Near the threshold of φ photo-production, the coherent process is suppressed due to the heavy mass
of the φ meson. The momentum transfer square |t| is much larger even at forward angles than
the momentum transfer square region where the coherent process is dominantly observed (|t| <
0.01 GeV2/c2). The minimum |t| are 0.0537, 0.0528, 0.0522, 0.0519 GeV2 for Li, C, Al, and Cu at
Eγ = 2.4 GeV, respectively. In order to determine the φ-N total cross section by Equation (1.6) in
Subsection 1.2, the yields for incoherent φ photo-production are needed.

Whether the φ mesons are produced coherently or incoherently has been investigated by using

Figure 4.2: Missing mass mX for γp→K+K−X in LH2. The green line shows the nominal mass of
the proton.
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missing mass. The missing mass mX for the reaction γA→K+K−X is given by

m2
X = E2X − (pxX2 + pyX2 + pzX2)

= (Eγ +mA − EK+ − EK−)2
−
n
(−pxK+ − pxK−)2 + (−pyK+ − pyK−)2 + (Eγ − pzK+ − pzK−)2

o
,

(4.4)

wheremA shows the target mass, (EX , p
x
X , p

y
X , p

z
X), (EK+ , pxK+ , p

y
K+ , p

z
K+), and (EK− , p

x
K− , p

y
K− , p

z
K−)

stand for the four dimensional momenta of missing particle and K+, and K−, respectively. Here,
the incident γ beam is assumed to go on a parallel with the z axis. Figure 4.2 shows the missing
mass distribution in LH2 assuming that the reaction should be γp→K+K−X. The missing mass
distribution is fitted with a Gaussian in the region from 0.925 to 0.955 GeV, the mass 0.9378 ±
0.0002 GeV and the width 0.0112±0.0004 GeV are obtained. The φ mesons are actually produced on
the proton. Figure 4.3 shows the missing mass mX distributions for the reaction γA→K+K−X in

Figure 4.3: Missing mass mX of γA→K+K−X in the real data. The blue lines show all the events,
and the red ones show the events with |t|<0.1GeV2. The green lines show the nominal mass of the
nuclei.

the four nuclear targets. These missing mass distributions in nuclear targets have much wider peaks
than that in LH2. If φ mesons are produced only in the coherent process, the width of the peak in
the missing mass distribution is widened only by the resolution of the detector system, energy loss
and multiple scattering in the target material, and these are in the same order as LH2 target. The
coherent process can not be dominant in the φ photo-production from nuclei in this energy range
basically. The events with |t| < 0.1 GeV2, which are shown by the red lines in Figure 4.3, make
the similar narrow peaks to the LH2 ones, and these positions are close to the masses of the nuclei.
The condition |t|< 0.1 GeV2 can enhance the coherent process, and this momentum transfer range
corresponds to the size of nuclei (3∼4 fm).
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Figure 4.4: Missing mass mX of γA→K+K−X for incoherent production in the MC simulation. The
blue lines show all the events, and the red ones show the events with |t|<0.1GeV2. The green lines
show the nominal mass of the nuclei.

Figure 4.5: Missing mass mX of γA→K+K−X for coherent production in the MC simulation. The
blue lines show all the events, and the red ones show the events with |t|<0.1GeV2. The green lines
show the nominal mass of the nuclei.
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The missing mass mX distribution for the reaction γA→K+K−X has been investigated for the
incoherently and coherently produced φ mesons in the MC simulation. Figure 4.4 and 4.5 show the
missing mass distributions for the incoherent and coherent processes, respectively. Here, the coherent
φ events are generated as a two body phase space, and large |t| events are enhanced. The coherent
process events concentrate at the mass of the nucleus in these distributions, and a fraction of the
events mX are close to the mass of the nucleus is very small for the incoherent process.

Let us define the missing energy Ex (excitation energy) as

Ex = mX −mA, (4.5)

where mX stands for the missing mass mX for the reaction γA→K+K−X. Figure 4.6 shows the

Figure 4.6: The blue histograms show the missing energy distributions for the real data. The green and
red ones show the missing energy distributions for the coherent and incoherent processes, respectively.
The normalization of both the coherent and incoherent processes are made by eyes.

comparison of the missing energy distributions between the real and MC simulation data. The missing
energy distributions of coherent φ photo-production concentrate at 0 MeV within the experimental
resolution (19 MeV), and those of incoherent production are distributed in the positive Ex region.
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4.3 Subtraction of the coherent process contribution

In this subsection, the estimation of the coherent process is determined with a help of theoretical
calculations. The amplitude for the γN → φN elementary process will have a spin-flip (sf) and a
non-spin-flip (nsf) parts:

TγN→φN = Tnsf + Tsf . (4.6)

To evaluate the cross section of the coherent process in the nucleus, the sum over spin, isospin, and
nucleons is performed for the amplitude.

σcoh ∼
¯̄̄ X
spin, isospin,
nucleons

TγN→φN
¯̄̄2 ∼ |Tnsf |2 (4.7)

The spin-flip part vanishes when summing over spin when the target is spin-saturated. The cross
section of the coherent process is affected only by the non-spin-flip part, thus differential cross section
can be expressed by the nuclear form factor F (q),

dσcoh
dΩ

= |AF (q)|2 (4.8)

The nuclear form factor F (q) is evaluated by the Fourier transform of the nucleon density distribution,

AF (q) =

Z
d~r ei~q·~rρ(~r) =

4π

q

Z ∞
0
dr r ρ(r) sin(q r). (4.9)

The density nuclear profiles are obtained from the experimental parameterization of the charge dis-
tributions [81], where the nucleon density is normalized assuming the same radial dependence of the

proton and neutron density distribution so that

Z
~r ρ(r) = A.

On the contrary, in the incoherent process, the square of the amplitude should be performed before
the sum over spin, isospin, and nucleons:

σinc ∼
X

spin, isospin,
nucleons

|TγN→φN |2 ∼ |Tnsf |2 + |Tsf |2 (4.10)

Therefore, the ratio between the coherent and incoherent process can be expressed as:

dσcoh/dt

dσinh/dt
∼ |AF (q)|

2

A

|Tnsf |2
|Tnsf |2 + |Tsf |2

≤ A|F (q)|2 (4.11)

Figure 4.7 shows the ratio of the coherent to incoherent cross sections as a function of the incident γ
energy, where the integration in the kinematical region |t|min < |t| < |t|max is also performed for each
process. The ratio does not increase monotonically as a consequence of the oscillatory behaviors of
the nuclear form factor. The relation between q2 and t is described for the target mass mA,

q2 =
t

4m2
A

(t− 4m2
A). (4.12)

Figure 4.8 shows the relation between q2 and t. The differential cross section dσ/dt can be expressed
by using the initial and final momenta in the center of mass frame pi, pf ,

dσcoh
dt

=
π |AF (q)|2
pi pf

(4.13)
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Figure 4.7: Coherent to incoherent ratio Figure 4.8: Relation between q2 and t

Figure 4.9: Coherent differential cross section dσcoh/dt. The red lines show the fitting results with a
function dσcoh/dt = C exp(−bt) in the region |t|=0.0—0.1 GeV2.
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Table 4.1: Fitting results for the low |t| coherent differential cross section
Target dσcoh/dt|t=0 (Arbitrary Unit) b (GeV−2/c−2)
Li 1.450± 0.019× 103 50.8± 0.5
C 3.626± 0.032× 103 57.2± 0.3
Al 1.886± 0.009× 104 109.2± 0.3
Cu 1.091± 0.003× 105 192.0± 0.3

Figure 4.9 shows the differential cross section in an arbitrary unit. The differential cross section is
fitted with the function dσcoh/dt|t=0 exp (−b|t|) in the low |t| region (|t| = 0.0—0.1 GeV2), and fitting
results are summarized in Table 4.3. Target mass number dependence of the differential cross section
at optical point dσcoh/dt(A)|t=0, and the slope of the exponential function for the differential cross
section b(A) is fitted with the function C Aα. The fitting results for the dσcoh/dt(A)|t=0 are

C = 26.4± 0.4, and
α = 1.998± 0.003, (4.14)

and those for b(A) are

C = 11.6± 0.2, and
α = 0.674± 0.005. (4.15)

Approximately dσcoh/dt(A)|t=0 ∝ A2, and b(A) ∝ R2 ∼ A2/3 can be valid.
The number of coherent production φ events for each nuclear target is assumed to be proportional

to the integration of the coherent differential cross section dσcoh/dt from |t|min to |t|max for each
incident γ energy Eγ . Figure 4.10 shows the cross section of coherent φ photo-production from nuclei.
Here, no other Eγ dependence is not taken into account than the integration region |t|min and |t|max.

Figure 4.10: Cross sections for coherent production σcoh(|t| > |t|min). An integration over |t| larger
than |t|min has been performed.
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The coherent cross section is larger for the larger mass number target when all the |t| region is
allowed (|t|min = 0 is assumed). The |t| > |t|min cross section of the coherent process has a similar
value for each target under the condition |t|min ∼ 0.05GeV2 for Eγ ∼ 2.4 GeV.

The number of the coherent φ events are estimated to be proportional to be 11.2, 16.2, 10.2, and
24.3 in a unit number of target nuclei (Ntgt) in an effective number of incident γ rays (NγCatt) for
Li, C, Al, and Cu, respectively, where only the integration cut point tmin depends on the incident γ
energy Eγ . The number of the coherent φ events are estimated for each target nuclei, each polarization
assuming that the missing energy for γA→ φA have a symmetric shape, and that all the negative
missing energy events for Li are produced in the coherent process. Figure 4.11 shows γA → φA
missing energy distribution for Li. The number of negative missing energy events are 14 and 27 for

Figure 4.11: Missing energy distribution in Li. The red histograms show the events with the negative
missing energy.

Figure 4.12: A-dependence with subtraction of the coherent φ events. The left panel shows the
A-dependence where each yield is evaluated subtracting the estimated coherent φ events from the
negative missing energy events in Li as an input, and the right one shows that where each yield is
evaluated subtracting twice number of negative missing energy events. The solid and dashed curves
show the fitting results with the functions Y (A) = YNAeff(A) and Y (A) = Y0A

α, respectively. The
fitting results are summarized in Table 4.3.
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vertically and horizontally polarized beam, respectively. The estimated number of coherent φ events

Table 4.2: Estimated number of coherent φ events
polarization Li C Al Cu

Vert. 28.0± 7.5 (14) 28.1± 7.5 (10) 9.4± 2.5 (9) 10.2± 2.7 (7)
Horz. 54.0± 10.4 (27) 44.8± 8.6 (20) 21.5± 4.1 (8) 20.2± 3.9 (4)

for each nuclear target for each polarization is summarized in Table 4.3 together with the number
of negative missing energy events in parentheses. Each yield for the incoherent process has been
evaluated subtracting the estimated coherent φ events (”From Li”) or subtracting twice number of
negative missing energy events (”From Each”). The yield are fitted with the function Y (A) = Y0A

α

and Y (A) = Aeff(A,σγN , σφN ) · YN . The yields Y (A) as a function of mass number A and fitting
results are shown in Figure 4.12 and are summarized in Table 4.3.

Table 4.3: Fitting results of the yield after the coherent φ events are subtracted with the “From
Li” and From “Each” methods. Both methods have two rows. Each yield column shows the yield
of φ events in the first row, and that of the non-resonant KK background in the second row. The
YN/Y0, σφN/α, and χ2 columns show the fitting results and χ2 of the fitting with the functions
Y (A) = YNAeff(A), Y (A) = Y0A

α in the first and second rows, respectively.

Method Yield (Li) Yield (C) Yield (Al) Yield (Cu) YA/Y0 σφN (mb)/α χ2

From Li 1.435± 0.135 1.698± 0.199 3.670± 0.285 6.554± 0.529 0.298± 0.055 35.1+17.1−11.3 1.35
0.122±0.052 0.160±0.081 0.330±0.143 0.371±0.215 0.327± 0.073 0.722± 0.069 2.74

From Each 1.435± 0.135 1.821± 0.197 3.597± 0.305 6.815± 0.572 0.298± 0.055 34.1+16.5−11.1 0.77
0.122±0.052 0.160±0.081 0.330±0.143 0.371±0.215 0.328± 0.072 0.727± 0.068 1.33
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4.4 Selection of the kinematical region for incoherent production

As a cross check, the coherent process contribution is removed by selecting the kinematical region
for incoherent production. The missing energy Ex distributions of coherent φ photo-production
concentrate at 0 MeV, and the events with Ex close to 0 MeV are few for incoherent φ production.
Thus, Ex is required to be larger than the threshold E

thr
x to select the incoherent events. Figure 4.13

Figure 4.13: Efficiency of the missing energy cut. The left panel shows the efficiency for the vertically
polarized photon data, and the right one shows that for the horizontally polarized ones.

shows the efficiency of this cut for incoherent φ photo-production estimated by the MC simulation.
The difference of the efficiencies among the four targets are somewhat large if Ethrx is larger than 60

Figure 4.14: φ-N total cross section σφN according to the Ex cut
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Table 4.4: Fitting results of the yield with Ex ≥ Ethrx . Every cut condition has three rows, where each
yield column shows the yield of φ events in the first row, those of the non-resonant KK background in
the second row, used number ofKK events in the standard φ cut in the third low. The YN/Y0, σφN/α,
and χ2 columns show the fitting results and χ2 of the fitting with the functions Y (A) = YNAeff(A),
Y (A) = Y0A

α in the first and second rows, respectively.

Ethrx (MeV) Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN / Y0 σφN (mb) / α χ2

No Cut 1.912± 0.112 2.419± 0.164 4.134± 0.276 7.553± 0.526 0.558± 0.067 70.8+31.7−19.0 0.44
0.122±0.052 0.160±0.081 0.330±0.143 0.371±0.215 0.543± 0.076 0.625± 0.047 1.94
188,160 145,122 137,149 123,115

0 1.675± 0.106 2.217± 0.157 3.900± 0.269 7.273± 0.517 0.416± 0.059 50.0+19.1−12.7 0.23
0.122±0.052 0.149±0.078 0.314±0.139 0.340±0.206 0.441± 0.066 0.668± 0.049 1.09
161,146 128,116 131,138 119,109

10 1.512± 0.102 2.039± 0.152 3.773± 0.265 7.037± 0.511 0.339± 0.052 38.8+13.7−10.0 0.21
0.117±0.051 0.150±0.078 0.301±0.137 0.341±0.207 0.373± 0.058 0.704± 0.051 0.81
139,138 117,108 126,133 114,106

20 1.388± 0.098 1.780± 0.143 3.590± 0.258 6.666± 0.500 0.288± 0.046 33.2+11.8−9.2 1.30
0.112±0.051 0.141±0.076 0.263±0.130 0.317±0.202 0.317± 0.053 0.731± 0.054 2.20
126,126 101,95 118,125 104,102

30 1.235± 0.095 1.634± 0.138 3.371± 0.250 6.061± 0.484 0.249± 0.040 29.7+11.7−8.2 1.06
0.116±0.052 0.131±0.074 0.214±0.117 0.326±0.208 0.281± 0.049 0.742± 0.057 1.66
104,118 90,88 110,112 95,90

40 1.141± 0.094 1.500± 0.134 3.180± 0.247 5.591± 0.474 0.229± 0.038 29.3+11.9−8.8 1.40
0.120±0.054 0.123±0.072 0.204±0.116 0.335±0.214 0.257± 0.048 0.745± 0.060 1.96
96,104 80,80 101,103 84,83

50 1.099± 0.096 1.342± 0.131 2.929± 0.243 5.171± 0.468 0.221± 0.039 31.7+14.9−10.1 2.28
0.127±0.058 0.128±0.075 0.195±0.115 0.322±0.217 0.244± 0.051 0.737± 0.067 3.10

85,99 70,70 89,92 72,76

60 1.068± 0.098 1.313± 0.134 2.667± 0.240 5.124± 0.483 0.214± 0.039 32.3+17.5−10.8 1.47
0.123±0.059 0.136±0.080 0.195±0.121 0.345±0.234 0.235± 0.053 0.736± 0.073 2.20

76,90 65,66 75,83 67,72

70 1.029± 0.101 1.292± 0.137 2.594± 0.244 4.982± 0.498 0.206± 0.039 31.7+18.1−11.2 1.02
0.128±0.063 0.133±0.082 0.185±0.121 0.372±0.252 0.227± 0.054 0.738± 0.076 1.59

72,76 61,60 67,77 62,65

80 1.014± 0.106 1.303± 0.142 2.509± 0.252 4.689± 0.508 0.219± 0.041 37.3+24.3−13.4 0.44
0.134±0.069 0.128±0.083 0.201±0.131 0.407±0.277 0.240± 0.059 0.712± 0.080 0.90

64,70 56,57 61,69 54,58

MeV. The yields Y H(A) and Y V(A) in Eq. (3.48) are divided also by the efficiency, and are given by

Y H(A) =
NH
φ

ηHMEη
H
geoη

H
DAQη

H
anaηattN

H
tagNτ

, and

Y V(A) =
NV
φ

ηVMEη
V
geoη

V
DAQη

V
anaηattN

V
tagNτ

,

(4.16)

where ηME shows the efficiency of the missing energy cut.
The yield are fitted with the function Y (A) = Y0A

α and Y (A) = Aeff(A,σγN ,σφN ) ·YN for various
Ethrx values. Table 4.4 shows the yields of the φ events, those of the estimated non-resonant K+K−

contribution, usedK+K− events in the standard φ cut together with the fitting parameters for various
Ethrx values. Figure 4.14 shows σφN as a function of Ethrx . Fitting results are stable from Ethrx = 30
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Figure 4.15: A-dependence with the 30 MeV missing energy cut. The solid and dashed curves show
the fitting results with the functions Y (A) = YNAeff(A) (σφN = 29.7

+11.7
−8.2 mb) and Y (A) = Y0A

α (α =
0.742± 0.057), respectively. The fitting results are summarized in Table 4.4.

up to 80 MeV. The cuts with the smaller Ethrx than 20 MeV make σφN larger, this implies the lighter
target has more coherent φ events. When the coherent events are more contaminated in the lighter
target, the yield is enhanced in the lighter target, and it makes σφN larger and α smaller.

The σφN is 29.7+11.7−8.2 mb for the 30 MeV cut, in which the statistics are highest. This value is
consistent with the values for the yields after the coherent contributions are subtracted as discussed
in Subsection 4.3. Figure 4.15 shows the yields as a function of mass number A together with the
fitting results.
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4.5 Comparison with the theoretical calculations

A quark model [29] gives a prediction of 13.0±1.5 mb for σφN = σφp [28]. This value is deduced from
the total π±p and K+p cross sections obtained at high energy limit as

σφp = 2(σK+p − σπ+p + σπ−p). (4.17)

The vector meson dominance model (VDM) indicates σφN = 7.7—8.7 mb at Eγ = 4.6—6.7 GeV [28],
which is obtained from the relation between σφN and dσ/dt|t=0:

dσγp→φp
dt

¯̄̄̄
t=0

=
α

64π

1 + α2φp
γ2φ/4π

σφp, (4.18)

where α stands for the fine structure constant, αφp denotes the the real-imaginary ratio of φ-proton
scattering amplitude, γ2/4π shows the γ-φ coupling constant, and the measured differential cross
section dσγp→φp/dt for φ photo-production on the proton has been used. Both the two values are σφN
in free space, which are smaller than the present results (about 35 mb), indicating the modification
of the φ-N scattering amplitude in the nuclear medium.

Cabrera et al. [27] calculated the A-dependence of the φ photo-production cross section from nuclei
in terms of the variable Pout = σA/(AσN ), which represents the probability of a photo-produced φ
meson going out the nucleus. The Pout was deduced from the yields for incoherent φ photo-production
as

Pout =
σA
AσN

=
Aeff
A

=
Y (A)

YNA
, (4.19)

where Y (A) and YN stand for the yield and coefficients of the fitting results with the function of
Y (A) = YN Aeff , respectively.

The probabilities Pout are obtained for the yields after the estimated coherent φ contributions are
subtracted as described in Subsection 4.3, and are summarized in Table 4.5. Figure 4.16 shows Pout as
a function of A together with the theoretical calculations given by Cabrera et al. [27]. The probabilities

Table 4.5: Probability Pout with subtraction of the coherent φ events
Method Li C Al Cu

From Li 0.694± 0.065 0.474± 0.056 0.456± 0.038 0.347± 0.029
From Each 0.694± 0.065 0.509± 0.055 0.447± 0.038 0.360± 0.030

Pout are smaller than the theoretical predictions. The reduction of the φ meson flux obtained in the
present experiment is almost twice as much as the theoretical predictions. The absolute value of Pout
depends on the applied model to deduce σφN . However, the ratio of Pout for different targets is model-
independent. The ratios Pout(C)/Pout(Li), Pout(Al)/Pout(Li), and Pout(Cu)/Pout(Li) are 0.683±0.103,
0.657±0.082, and 0.500±0.063, respectively, for the yields after the coherent φ events estimated from
the negative missing energy events in Li are subtracted. Note that the average momentum of the
detected φ mesons are hPφi = 1.8 GeV/c as described in Subsection 3.5.3. The ratios are 0.733±0.105,
0.644±0.081, and 0.519±0.065 for the yields after the coherent φ events estimated from the negative
missing energy events in each target are subtracted, respectively. Figure 4.17 shows the ratios. These
ratios are 0.97—0.98, 0.91—0.94, and 0.85—0.88, respectively, for Pφ = 2.0 GeV/c regardless of the
Pauli-blocking effect in the theoretical calculations [27]. The ratios are smaller than the theoretical
predictions. The theoretical calculations underestimate the decrease of photo-produced φ meson flux
in the nucleus.
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Figure 4.16: Comparison of Pout for the yields after the coherent φ events are subtracted. The left
panel shows Pout where each yield is evaluated subtracting the estimated coherent φ events from the
negative missing energy events in Li as an input, and the right one shows that where each yield is
evaluated subtracting twice number of negative missing energy events. The red and green curves show
the theoretical calculations given by Cabrera et al. [27] without and with Pauli-blocking correction
for the φ meson scattering angle in the laboratory frame of 0◦, respectively. The overall normalization
errors (∼ 19%) are not included in this figure.

Figure 4.17: Comparison of Pout/Pout(Li) for the yields after the coherent φ events are subtracted.
The red and green curves show the theoretical calculations given by Cabrera et al. [27] without
and with Pauli-blocking correction for the φ meson scattering angle in the laboratory frame of 0◦,
respectively.
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As a cross check, the probabilities Pout are estimated for the yields in the kinematical region of the
incoherent process (30 MeV missing energy cut) as described in Subsection 4.4, and are summarized
in Table 4.5. Figure 4.18 shows the probability Pout as a function of A. The probabilities Pout are

Table 4.6: Probability Pout in the kinematical region of the incoherent process
Li C Al Cu

Pout 0.715± 0.055 0.546± 0.046 0.501± 0.037 0.384± 0.031

Figure 4.18: Comparison of Pout in the kinemati-
cal region of the incoherent process. The red and
green curves show the theoretical calculations as
same as Figure 4.16. The overall normalization
error (18%) is not included in this figure.

Figure 4.19: Comparison of Pout/Pout(Li) for the
yields in the kinematical region of the incoherent
process. The red and green curves show the same
theoretical calculations as Figure 4.17.

also smaller than the theoretical predictions. The ratios Pout(Li)/Pout(Cu), Pout(C)/Pout(Cu), and
Pout(Al)/Pout(Cu) are 0.764 ± 0.087, 0.701 ± 0.075, and 0.537 ± 0.060, respectively. The ratios are
also smaller than the theoretical predictions.

The discrepancy in the probabilities Pout and the ratios Pout/Pout(Li) implies that the φ-N in-
teraction is stronger than theoretical estimations due to the modification of the φ properties in the
nuclear medium.

4.6 Why large σφN is obtained?

The reasons why large σφN is obtained would be attributed to

• σφN is actually enlarged in the nuclear medium,

• difference of φ photo-production cross sections σp and σn and difference of total φ−p and φ−n
cross sections,
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• the Glauber-type multiple scattering theory can not be applicable in this energy range,
• the φ-N interaction at low energies is strong, and

• the subtraction ambiguity of the coherent φ contribution.

σφN is actually enlarged in the nuclear medium:

It has been expected to be observed that σφN is enlarged in the nuclear medium due to the change
of the φ properties. Cabrera et al. calculate the A-dependence from the φ self-energy in the nuclear
medium. However, Cabrera’s calculations do not include the modification of nucleons in the nuclear
medium. It is difficult to determine whether σφN is enlarged due to the modification of nucleons or
due to that of the φ meson.

Difference of φ photo-production cross sections σp and σn and difference of total φ − p
and φ− n cross sections:
In the determination of σφN , the φ photo-production cross sections on the proton σp and the neutron
σn are assumed to be the same in the present work. For the photo-production of ρmesons, a theoretical
calculation has predicted that the ratio of the production cross sections between σ(γp → ρp) and
σ(γn → ρn) is not unity [88]. The ratio of φ photo-production cross sections between σp and σn
can not be unity. The total φ-p and φ-n cross sections σφp and σφn are also assumed to be the
same. Basically, the targets used are the N'Z nuclei. These differences between σp and σn and
between σφp and σφn do not affect the average value of σN and σφN . It is needed to investigate the
φ photo-production cross sections from various nuclei including N 6=Z nuclei.

Applicability of the Glauber-type multiple scattering theory:

The Glauber-type multiple scattering theory is applied in a wide energy range. The σηN has been
determined by using the theory with a large scattering angle correction at low energies where the
kinetic energy of the η meson ranges Tη < 200 MeV [32]. Applicability of the theory can be tested
by comparing the PDG value of the σK+N and σK+N determined by applying the theory to single
K+ photo-production in the present data. The applicability of the theory for ρ photo-production is
also important in this energy range. In the present experimental setup, however, produced charged
π’s from ρ mesons are vetoed online by the silica aerogel Čerenkov counter.

φ-N interaction at low energies is strong:

If the φ-N interaction at low energies is strong, the enlargement of σφN in the nuclear medium is not
attributed to the effect of the medium modification. It is reported that the |t| = |t|min limit values
of the differential cross section as a function of Eγ show a bump around Eγ = 2 GeV [57]. This
is incompatible with the interpretation by Pomeron and pseudo scalar exchanges only. The scalar
exchange and existence of a φ-N resonance can account for the the bump.

Subtraction ambiguity of the coherent φ contributions:

In the present work, the φ photo-production cross section has been assumed to be the sum of the
coherent and incoherent ones. If this assumption is not valid, the different value of σφN will be
obtained. The semi-coherent φ production in which only a few nucleons are involved is discussed in
Subsection E.2.



Chapter 5

Conclusion

The photo-production of φ mesons from nuclear targets were measured at SPring-8/LEPS (“φ photo-
production off nuclei”, C01BL33LEP-6002N, Spokesperson: T. Ishikawa) in order to deduce the φ-N
total cross section σφN and to investigate the modification of the φ properties in the nuclear medium.
Photons were produced by backward Compton scattering with an ultra-violet Ar laser from 8 GeV
electrons in the storage ring, and ranged from 1.5 to 2.4 GeV. The targets used in the experiment
were Li, C, Al, and Cu with thicknesses of 100 mm, 36 mm, 24 mm, and 3 mm, respectively. Charged
kaons decayed from φ mesons were detected at forward angles with the LEPS spectrometer. The φ
mesons were observed in the K+K− invariant mass distributions. The measured mass and width
were consistent with those of the free φ meson. This is because the almost all the φ mesons decay
outside a nucleus (>∼ 95%) in the momentum range from 1.0 to 2.2 GeV. The measured momentum

transfer |t| ranged up to 0.6 GeV 2. The differential cross section for each target was fitted with a
function of dσ/dt̃ = C exp(−bt̃), where t̃ = |t| − |t|min, and |t|min is the minimum |t| given under
the assumption that the target is a proton at rest. The obtained slope parameters b were 3.6±0.9,
4.5±1.0, 3.1±0.9, and 4.5±1.0 GeV−2, respectively. These parameters were consistent with that for
φ photo-production on the proton b = 2.1 ∼ 3.0 GeV−2 at SAPHIR [70], or b = 3.38 ± 0.23 GeV−2
at LEPS [57] within the errors. The cross section of all the φ events for each target was found to be
proportional to A0.63±0.05.

The contribution of the coherent process could not be negligibly small especially for light nuclear
targets even at low energies (Eγ ∼ 2 GeV). The missing energy Ex was defined as Ex = mX −mA,
where mX was the missing mass for the reaction γA→ φX, and mA stands for the mass of the target
nucleus. The Ex for the coherent process concentrated at 0 MeV within the experimental resolution,
and that for the incoherent process was distributed in the positive Ex region. The obtained Ex distri-
bution had not only incoherent but also small coherent contributions. The coherent contribution in
Li was evaluated in the Ex distribution. Assuming that there were no φ events produced incoherently
in the negative Ex region, the total coherent events were estimated to be twice the number of events
in the negative Ex region. Since the coherent contribution was relatively small for the heavier target,
the coherent φ contributions in the other targets were evaluated theoretically using the estimated
one in Li as an input. The contribution of the coherent process is proportional to the square of
the nuclear form factor dσ/dq ∝ |AF (q)|2, where q was the three dimensional momentum transfer.
After subtracting the coherent contribution as the background, the cross sections gave a relation
σA ∝ A0.72±0.07.

In order to determine σφN from the A-dependence of the φ photo-production cross section, an
optical model of a Glauber-type multiple scattering theory for incoherent production was applied. In
this model, the production cross section from a nucleus is described as dσincA /dt = Aeff dσN/dt, where
Aeff is the effective nucleon number and dσN/dt is the production cross section on the nucleon. The
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Aeff is a function of A, σγN , and σφN , where σγN stands for the total photon-nucleon cross section.
The σγN was fixed to be 140 µb in the energy range from 1.5 to 2.4 GeV. The measured photo-
production cross sections were fitted by a function σA = Aeff σN with σφN and σN as free parameters.
The value of σφN was estimated to be 35+17−11 mb [89, 90].

As a cross check, the coherent contributions for the other targets were estimated using the exactly
same technique as in the case of Li. In this case, σA was proportional to A

0.73±0.07, and σφN was
estimated to be 34+17−11 mb. It was consistent with the former results. Similar results were also
obtained by selecting the kinematical region for the incoherent process instead of subtracting the
coherent contribution. When the events with Ex larger than 30 MeV were selected σA ∝ A0.74±0.06
and σφN = 30+12−8 mb were obtained. The results were stable even if the missing energy cut was
tightened up to 80 MeV. These values obtained in this experiment were much larger than σφN in free
space (7.7—8.7 mb) [28].

Although it is difficult to separate the incoherent and coherent φ photo-productions near the
threshold, the estimated σφN was always about 35 mb in any case from the A-dependence of incoherent
φ photo-production. The values were much larger than σφN in free space, indicating the modification
of the φ-N scattering amplitude in the nuclear medium. The A-dependence of the yields for incoherent
φ photo-production was compared with the theoretical calculations given by Cabrela et al. in terms
of the probability Pout = σA/(AσN ). The obtained Pout were smaller than the theoretical predictions.
The absolute value of Pout obtained in the experiment depends on an applied model to deduce σφN .
The model-independent ratios Pout/Pout(Li) were estimated, and were also smaller than the theoretical
predictions. The theoretical calculations underestimate the decrease of photo-produced φ meson
flux in the nucleus. This discrepancy implies that the φ-N interaction is stronger than theoretical
estimations due to the modification of the φ properties in the nuclear medium.

In summary, the A-dependence of the φ photo-production cross section suggests that the φ proper-
ties might change in the nuclear medium although the change of the mass and width is not observed
in the K+K− invariant mass distribution. The ratio Pout/Pout(Li) is smaller than the theoretical
predictions, which implies that the in-medium modification might be larger than the predictions. It
should be noted that the σφN value in free space is still ambiguous at low energies. It is important
to establish the production mechanism for φ photo-production on the proton near the threshold and
to confirm the σφN value in free space at low energies.
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Appendix A

A-dependence of the production cross
section

The production cross sections of the coherent and incoherent processes are reviewed [47, 48], some
typographic errors in the references are corrected, and omitted intermediate formulae are added.

The reaction 1 +N → 2 +N is considered, and the assumptions in the kinematics are the same
as in Subsection 1.2. The vector ~k denotes the momentum of the incident photon. The vector ~b
stands for the impact parameter of particles 1 and 2. A set of A nucleons is assumed to occupy fixed
positions ~s1, . . . , ~sA relative to the axis of a collision, and the vectors ~s1, . . . , ~sA are perpendicular to
~k. Figure A.1 shows definition of the kinematics for the estimation of the production cross sections.

Figure A.1: Definition of the kinematics for the estimation of the production cross sections. The ~k
denotes the momentum of the incident photon, and the ~b stands for the impact vector. The ~sj shows
the transverse component for the position of the nucleon j.

The profile function Γij(~b) is defined as

Γij(~b) =
1

2πik

Z
fij(~q) exp(−i~q ·~b)d2q, (A.1)

where fij is the two-body scattering or production amplitude, and ~q is the momentum transfer. The
inverse relations are obtained by the Fourier transformation.

fij(~q) =
ik

2π

Z
Γij(~b) exp(i~q ·~b)d2b. (A.2)

The production amplitude at small angles is given by

FFI(~q) =
ik

2π

AX
j=1

Z
exp(i~q ·~b)d2b

Z
u∗F (~r1, . . . , ~rA)Γ(~b− ~sj)
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×
iY

zi<zj

³
1− Γ11(~b− ~si)

´ kY
zk>zj

³
1− Γ22(~b− ~sk)

´
uI(~r1, . . . , ~rA)d~r1 · · · d ~rA, (A.3)

where uI(~r1, . . . , ~rA) and uF (~r1, . . . , ~rA) are the target wave functions for the initial and final states,
respectively.

A.1 Production cross section for the coherent process

The final state is the same as initial one for the coherent process:

uF (~r1, . . . , ~rA)
∗uI(~r1, . . . , ~rA) = |uI(~r1, . . . , ~rA)|2. (A.4)

A simple approximation for the nuclear wave function without any correlations among nucleons are
applied following Glauber [46]:

|uI(~r1, . . . , ~rA)|2 =
AY
i=1

ρ(~ri), (A.5)

where ρ(~rj) describes the single particle density function of the nucleus, and which satisfiesZ
ρ(~rj)d~rj = 1. (A.6)

The approximation (A.7) can hold under the condition that the range of the two body interactions is
much less than the nuclear radius, and in that case ρ(~sj , z) varies slowly compared to Γ(~b− ~sj) as a
function of ~sj .Z

Γij(~b− ~sj)ρ(~sj , z)d2sjdz ∼=
Z
Γij(~b− ~sj)d2sj

Z
ρ(~b, z)dz = −2πi

k

fij(0)T (~b)

A
, (A.7)

where

T (~b) = A

Z
ρ(~b, z)dz, (A.8)

and Eq. (A.2) has been used. Substituting the production wave functions in Eq. (A.3), the coherent
production amplitude FFI becomes

FFI(~q) =
ik

2π

AX
j=1

Z
exp(i~q ·~b)d2b

Z
Γ12(~b− ~sj)ρ(~rj)d~rj

×
iY

zi<zj

Z ³
1− Γ11(~b− ~si)

´
ρ(~ri)d~ri

kY
zk>zj

Z ³
1− Γ22(~b− ~sk)

´
ρ(~rk)d~rk

=
ik

2π

Z
exp(i~q ·~b)d2b

µ
−2πik f12(0)T (~b)

A

¶ AX
j=1

µ
1 + 2πi

k
f11(0)T (~b)

A

¶j−1µ
1 + 2πi

k
f22(0)T (~b)

A

¶A−j

=
ik

2π

Z
exp(i~q ·~b)d2b

µ
−2πik f12(0)T (~b)

A

¶ µ1 + 2πi
k
f11(0)T (~b)

A

¶A
−
µ
1 + 2πi

k
f22(0)T (~b)

A

¶A
µ
1 + 2πi

k
f11(0)T (~b)

A

¶
−
µ
1 + 2πi

k
f22(0)T (~b)

A

¶
=

ik

2π

−f12(0)
f11(0)− f22(0)

Z
exp(i~q ·~b)d2b

(µ
1 + 2πi

k
f11(0)T (~b)

A

¶A
−
µ
1 + 2πi

k
f22(0)T (~b)

A

¶A)

=
ik

2π

−f12(0)
f11(0)− f22(0)

Z
exp(i~q ·~b)d2b

×
½
exp

µ
2πi

k
f11(0)T (~b)

¶
− exp

µ
2πi

k
f22(0)T (~b)

¶ ¾
(A.9)
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The approximationÃ
1 +

2πi

k

fij(0)T (~b)

A

!A
∼= exp

µ
2πi

k
fij(0)T (~b)

¶
(A.10)

has been used in the transformation of the equation (A.9). Using the optical theorem

Imfii(0) =
k

4π
σiN , (A.11)

where σiN is the total cross section of the particle i in interaction with a nucleon, the coherent
production cross section is described by using the cylindrical Bessel function of the first kind of order
zero J0 as

dσcoh

dt
=

µ
dσN
dt

¶
t=0

4

(σ1N − σ2N )2 + (α1Nσ1N − α2Nσ2N )2
¯̄̄̄Z
J0(qb)

½
exp

µ
−1
2
(1− iα1N )σ1NT (b)

¶
− exp

µ
−1
2
(1− iα2N )σ2NT (b)

¶¾
db

¯̄̄̄2
, (A.12)

where αiN are the ratio of real to imaginary parts of the scattering amplitudes on a nucleon, and
dσN/dt is the two body cross section corresponding to the reaction 1 +N → 2 +N . For t = 0 limit,
a simple two body cross sectionÃ

dσcoh

dt

!
t=0

=

µ
dσN
dt

¶
t=0
A2eff(A,σ1N/2,σ2N/2) (A.13)

is obtained by using Aeff defined in Eq. (1.3) in Subsection 1.2.

A.2 Production cross section for the incoherent process

The production amplitude can be express as

FFI(~q) =
X
j

FFIj(~q), (A.14)

where

FFIj(~q) =
ik

2π

Z
exp(i~q ·~b)d2b

Z
u∗F (~r1, . . . , ~rA)Γ(~b− ~sj)

×
iY

zi<zj

³
1− Γ11(~b− ~si)

´ kY
zk>zj

³
1− Γ22(~b− ~sk)

´
uI(~r1, . . . , ~rA)d~r1 · · · d ~rA. (A.15)

The cross section for the incoherent process can be described as

dσinc

dΩ
=
X
F

X
j

|FFIj |2 =
X
j

|FIIj |2, (A.16)

where closure has been used the transformation from the middle side to the right hand side. Using
the production wave function (A.5), the incoherent production cross section becomes

dσinc

dΩ
=

k2

4π2

AX
j=1

Z
d2b d2b0 exp

³
i~q · (~b− ~b0)

´
u∗I( ~r1, . . . , ~rA)uI( ~r1, . . . , ~rA)Γ

∗
12(
~b0 − ~sj)Γ12(~b− ~sj)
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×
iY

zi<zj

³
1− Γ∗11(~b0 − ~si)

´ ³
1− Γ11(~b− ~si)

´

×
kY

zk>zj

³
1− Γ∗22(~b0 − ~sk)

´ ³
1− Γ22(~b− ~sk)

´
d~r1 · · · d ~rA

=
k2

4π2

Z
d2b d2b0 exp

³
i~q · (~b− ~b0)

´ Z
Γ∗12(~b0 − ~sj)Γ12(~b− ~sj)d~rj

×

µZ
(1−Γ∗11(~b0−~si))(1−Γ11(~b−~si))d~ri

¶A
−
µZ

(1−Γ∗22(~b0− ~sk))(1−Γ22(~b− ~sk))d ~rk
¶A

µZ
(1−Γ∗11(~b0−~si))(1−Γ11(~b−~si))d~ri

¶
−
µZ

(1−Γ∗22(~b0− ~sk))(1−Γ22(~b− ~sk))d ~rk
¶ (A.17)

The following relations (A.18) and (A.19) hold.Z
Γ∗ij(~b0 − ~s)Γij(~b− ~s)d2s

=

Z
d2s
−i
2πk

Z
f∗ij(~q0) exp

³
−i~q0 · (~b0 − ~s)

´
d2q0

i

2πk

Z
fij(~q) exp

³
−i~q · (~b− ~s)

´
d2q

=
1

k2

Z Z
f∗ij(~q0)fij(~q) exp

³
−i(~q ·~b+ ~q0 · ~b0)

´ 1

4π

Z
exp

³
i(~q0 + ~q) · ~s

´
d2s d2q0 d2q

=
1

k2

Z Z
f∗ij(~q0)fij(~q) exp

³
−i(~q ·~b+ ~q0 · ~b0)

´
δ(~q0 + ~q)d2q0 d2q

=
1

k2

Z
|fij(~q)|2 exp

³
−i~q · (~b− ~b0)

´
d2q, and (A.18)

Z ³
1− Γ∗ii(~b0 − ~s)

´ ³
1− Γii(~b− ~s)

´
ρ(~r)d2r

=

Z
ρ(~r)− Γ∗ii(~b0 − ~s)ρ(~r)− Γii(~b− ~s)ρ(~r) + Γ∗ii(~b0 − ~s)Γii(~b− ~s)ρ(~r)d2r

= 1− 2πi
k
f∗ii(0)

T (~b0)
A

+
2πi

k
fii(0)

T (~b)

A
+

Z
Γ∗ii(~b0 − ~s)Γii(~b− ~s)ρ(~r)d~r

= 1− 2πi
k
(f∗ii(0)− fii(0))

T (~b)

A
+

Z
Γ∗ii(~b0 − ~s)Γii(~b− ~s)d2s

T (~b)

A

= 1− σiNT (~b)

A
+
1

k2

Z
|fij(~q)|2 exp

³
−i~q · (~b− ~b0)

´
d2q

T (~b)

A
, (A.19)

where the approximation T (~b0) ∼= T (~b) has been used, and also the optical theorem

σiN =
4π

k
Imfii(0) = −2πi

k
(f ∗ii(0)− fii(0)) (A.20)

has been used.

Substituting ~b− ~b0 with β and using the relations (A.18) and (A.19), Eq. (A.17) becomes
dσinc

dt
∼= k2

4π2

Z
d2b d2β exp(i~q · ~β)

×
1

k2

Z
|f12(~q0)|2 exp

³
−i~q0 · ~β

´
d2q0

T (~b)

A

−(σ1N − σ2N )T (
~b)

A
+
1

k2

Z ³
|f12(~q0)|2 − |f12(~q0)|2

´
exp

³
−i~q0 · ~β

´
d2q0

T (~b)

A
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×
"
exp

³
−σ1NT (~b)

´(
1 +

1

k2

Z
|f11(~q0)| exp(−i~q0 · β)d2q0T (

~b)

A

)

− exp
³
−σ1NT (~b)

´(
1 +

1

k2

Z
|f22(~q0)| exp(−i~q0 · β)d2q0T (

~b)

A

)#

∼= k2

4π2

Z
d2b d2β exp(i~q · ~β) 1

k2

Z
|f12(~q0)|2 exp

³
−i~q0 · ~β

´
d2q0

×
exp

³
−σ1NT (~b)

´
− exp

³
−σ2NT (~b)

´
−(σ1N − σ2N )

1

+

1

k2

Z ³
|f11( ~q00)|2 − |f22( ~q00)|2

´
exp(−i ~q00 · β)d2q00

σ1N − σ2N

+

Z ³
exp

³
−σ1NT (~b)

´
|f11( ~q00)|2 − exp

³
−σ2NT (~b)

´
|f22( ~q00)|2

´
exp(−i ~q00 · β)d2q00

exp
³
−σ1NT (~b)

´
− exp

³
−σ2NT (~b)

´

×T (~b)


=

Z
d2b
exp

³
−σ1NT (~b)

´
− exp

³
−σ2NT (~b)

´
−(σ1N − σ2N )

×
Z
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½
1

4π2

Z
exp

³
i(~q − ~q0) · β

´
d2β

¾
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+

Z
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exp

³
−σ1NT (~b)

´
− exp

³
−σ2NT (~b)

´
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Z
|f12(~q0)|2


1

k2

×

Z ³
|f11( ~q00)|2 − |f22(~q00)|2

´½ 1

4π2

Z
exp

³
i(~q − ~q0 − ~q00) · β

´
d2β

¾
d2q00

σ1N − σ2N

 d2q0
+

Z
d2b

n
|f11( ~q00)|2 exp

³
−σ1NT (~b)

´
− |f22(~q00)|2 exp

³
−σ2NT (~b)

´o
×
½
1

4π2

Z
exp

³
i(~q − ~q0 − ~q00) · β

´
d2β

¾
T (~b)d2q00

=
dσN
dt
Aeff(A,σ1N ,σ2N ) +

Z
dσN (~q0)
dΩ0

G(~q, ~q0;A, σ1N ,σ2N )d2q0, (A.21)

where the Dirac’s delta functions

1

4π2

Z
exp

³
i~β · (~q − ~q0)

´
d2β = δ(~q − ~q0)

1

4π2

Z
exp

³
i~β · (~q − ~q0 − ~q00)

´
d2β = δ(~q − ~q0 − ~q00)

(A.22)

have been used, and Aeff and G are defined in Eqs. (1.5) and (1.3) in Subsection 1.2, respectively.
The same equation as Eq. (1.2) is obtained.



Appendix B

Decay angular distribution of the
vector meson

In this appendix, the decay angular distribution of the φ meson that has been used in the Monte
Carlo (MC) simulation g3leps is reviewed [82, 83].

B.1 General decay angular distribution of the vector meson

The decay angular distribution of the vector meson into spinless mesons in its rest frame is described
as

W (cos θ,φ) =Mρ(V )M † =
X

λV ,λ
0
V

hθ,φ|M |λV iρλV ,λ0V hλ
0
V |M †|θ,φi, (B.1)

where M is the decay amplitude, and ρ(V ) is the density matrix of the vector meson. The M is
expressed as

hθ,φ|M |λV i =
r
3

4π
D1∗λV 0(φ, θ,−φ), (B.2)

where D is the Wigner rotating functions given by

D110(φ, θ,−φ) = −
1

2
sin θe−iφ,

D100(φ, θ,−φ) = cos θ, and

D1−10(φ, θ,−φ) =
1

2
sin θeiφ.

(B.3)

Because the density matrix ρ(V ) is hermitian, the angular distribution is obtained as

W (cos θ,φ) =
3

4π

½
1

2
(ρ(V )11 + ρ(V )−1−1) sin2 θ + ρ(V )00 cos

2 θ

+
1√
2

µ
−Reρ(V )10 +Reρ(V )−10

¶
sin 2θ cosφ

+
1√
2

µ
Imρ(V )10 + Imρ(V )−10

¶
sin 2θ cosφ

−Reρ(V )1−1 sin2 θ cos 2φ+ Imρ(V )1−1 sin2 θ sin 2φ
¾
.

(B.4)
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B.2 Density matrix of linearly polarized photons

The wave function of linearly polarized photons is described as

|γi = − 1√
2

³
e−iΦ |λγ = +1i− e−iΦ |λγ = −1i

´
, (B.5)

where Φ is an angle between the polarization vector of the photon and the production plane (x-z
plane) in the helicity frame as defined in Subsection 3.5.5. Then, the density matrix of linearly
polarized pure photon states is constructed as

ρ(γ) =
1

2

Ã
1 −e−2iΦ
−e2iΦ 1

!
. (B.6)

As for partially polarized photons, the density matrix is written as a combination of the unit matrix
I, and the Pauli matrices σi (i = 1, 2, 3):

ρ(γ) =
1

2

³
I + ~Pγ · ~σ

´
, (B.7)

where ~Pγ is the vector of the polarity, which is described as

~Pγ = Pγ(− cos 2Φ,− sin 2Φ, 0) (B.8)

for linear polarized photons.

B.3 Decomposition of the density matrix ρ(V )

The polarization states of the photon and the vector meson are connected by the production amplitude
T as

ρ(V ) = Tρ(γ)T †. (B.9)

Then, elements of the density matrix ρ(V ) can be written as³
ρ0(V ), ρα(V )

´
= T

µ
1

2
I,
1

2
σα
¶
T †, (B.10)

and ρ(V ) is transformed from Eq. (B.7):

ρ(V ) = ρ0(V ) +
3X
i=1

Pα
γ ρ(V )

α. (B.11)

The four hermitian matrices ρα (α = 0, 1, 2, 3) are described as

ρ0λV λV 0 =
1

2N

X
λγ ,λ0NλN

TλV λ0N ,λγλNT
∗
λV

0λ0N ,λγλN
,

ρ1
λV λV

0 =
1

2N

X
λγ ,λ0NλN

TλV λ0N ,−λγλNT
∗
λV

0λ0N ,λγλN
,

ρ2λV λV 0 =
1

2N

X
λγ ,λ0NλN

λγTλV λ0N ,−λγλNT
∗
λV

0λ0N ,λγλN
, and

ρ3
λV λV

0 =
1

2N

X
λγ ,λ0NλN

λγTλV λ0N ,λγλNT
∗
λV

0λ0N ,λγλN
,

(B.12)
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where the label V is omitted from ρ(V )ik. The parity conservation gives relations between the elements
in the matrix as

ραλλ0 = (−1)λ−λ
0
ρα−λ−λ0 for α = 0, 1, and

ραλλ0 = −(−1)λ−λ
0
ρα−λ−λ0 for α = 2, 3.

(B.13)

From Eq (B.4), the decay angular distribution W (cos θ,φ) is expressed as

W (cos θ,φ) =W 0(cos θ,φ) +
3X

α=1

Pα
γ W

α(cos θ,φ), (B.14)

where

W 0(cos θ,φ) =
3

4π

µ
1

2
(1− ρ000) +

1

2
(3ρ000 − 1) cos2 θ

−
√
2Reρ010 sin 2θ cosφ− ρ01−1 sin2 θ cos 2φ

¶
,

W 1(cos θ,φ) =
3

4π

µ
ρ111 sin

2 θ + ρ100 cos
2 θ −√2ρ110 sin 2θ cosφ− ρ11−1 sin2 θ cos 2φ

¶
,

W 2(cos θ,φ) =
3

4π

µ
+
√
2Imρ210 sin 2θ sinφ+ Imρ

2
1−1 sin

2 θ sin 2φ

¶
, and

W 3(cos θ,φ) =
3

4π

µ
+
√
2Imρ310 sin 2θ sinφ+ Imρ

3
1−1 sin

2 θ sin 2φ

¶
.

(B.15)

The decay angular distribution for linearly polarized photons with the vector of the polarization in
Eq. (B.8) becomes

W (cos θ,φ,Φ) =W 0(cos θ,φ)− Pγ cos 2Φ W 1(cos θ,φ)− Pγ sin 2Φ W 2(cos θ,φ). (B.16)

B.4 Density matrix for the s-channel helicity conserving model

The production amplitude in the center of mass frame is described as

TλV λ0N ,λγλN = tλNλγδλ
0
N
λN δλV λγ . (B.17)

The s-channel helicity conserving model with Jπ = 0+, 0− exchange have in the helicity frame the
characteristics: 1) the matrices ρα (α = 0, 1, 2, 3) are independent of photon energy and production
angle, and 2) ρ0, ρ3 are diagonal and ρ1, ρ2 are antidiagonal. Then, the density matrices in the helicity
system of the vector meson for the s-channel helicity conserving model are written as

ρ0 =

 +1/2 0 0
0 0 0
0 0 +1/2

 , ρ1 =

 0 0 +a
0 0 0
+a 0 0

 ,
ρ2 =

 0 0 −ia
0 0 0
+ia 0 0

 , and ρ3 =

 +1/2 0 0
0 0 0
0 0 −1/2

 ,
(B.18)

where a = +1/2, −1/2 for Jπ = 0+, 0− exchange, respectively. In the MC simulation, incoher-
ent φ photo-production on a nucleon is generated by the spin density matrix of the natural parity
exchange (Jπ = 0+).



Appendix C

Systematic uncertainty

C.1 Different responses of the detector system

C.1.1 Acceptance of the particle identification

The difference of the detector system for the various targets is only the target material itself, and the
energy loss and multiple scattering in it can affect the acceptance of the particle identification. Since
effects of energy loss and multiple scattering in the target materials to the particle identification are
considered to be small, the acceptance of the particle identification is thought to be the same for all
the targets. This is confirmed by the Monte Calro (MC) simulation. Figure C.1 shows the momentum
distribution of K+ and K− particles for the φ events in the real data. Because the momenta of these
concentrates between p = 0.6 ∼ 1.2 GeV, the acceptance is checked only in the momentum region
p = 0.5—1.3 GeV.

At first, how many particles pass the particle identification and the good track cuts for the K+

Figure C.1: Momentum distribution of K+ and K−. The blue lines show the momentum distributions
of K+, and the red ones show those of K−.
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andK− particles which come to the TOF wall without decaying are examined in each momentum bin.
Figure C.2 and Table C.1 shows the passing ratio of the cuts. The very high acceptance (more than

Figure C.2: Passing ratio of the particle identification and the good track cuts. The ratios that K+

and K− are detected as K+ and K− are shown in each momentum region.

Table C.1: Passing ratio of the particle identification and decay in flight cuts
p (GeV/c) Li C Al Cu

K+

0.5—0.6 0.9450±0.0039 0.9524±0.0037 0.9570±0.0035 0.9595±0.0034
0.6—0.7 0.9665±0.0024 0.9680±0.0024 0.9653±0.0025 0.9660±0.0025
0.7—0.8 0.9732±0.0021 0.9700±0.0022 0.9726±0.0021 0.9714±0.0021
0.8—0.9 0.9773±0.0021 0.9774±0.0021 0.9764±0.0021 0.9758±0.0021
0.9—1.0 0.9781±0.0025 0.9726±0.0027 0.9766±0.0025 0.9728±0.0026
1.0—1.1 0.9815±0.0030 0.9760±0.0034 0.9797±0.0031 0.9808±0.0029
1.1—1.2 0.9749±0.0055 0.9717±0.0058 0.9613±0.0068 0.9721±0.0056
1.2—1.3 0.8855±0.0247 0.9682±0.0140 0.9467±0.0173 0.9337±0.0178
K−

0.5—0.6 0.9564±0.0036 0.9566±0.0037 0.9483±0.0040 0.9614±0.0034
0.6—0.7 0.9652±0.0026 0.9685±0.0025 0.9623±0.0027 0.9632±0.0026
0.7—0.8 0.9649±0.0025 0.9675±0.0024 0.9681±0.0024 0.9714±0.0022
0.8—0.9 0.9663±0.0026 0.9736±0.0023 0.9733±0.0023 0.9719±0.0023
0.9—1.0 0.9731±0.0028 0.9782±0.0025 0.9752±0.0027 0.9773±0.0025
1.0—1.1 0.9731±0.0038 0.9721±0.0040 0.9738±0.0036 0.9760±0.0034
1.1—1.2 0.9667±0.0065 0.9703±0.0064 0.9671±0.0067 0.9621±0.0070
1.2—1.3 0.9249±0.0200 0.9231±0.0213 0.9226±0.0215 0.9121±0.0210

98 % for p = 0.6—1.2 GeV/c) is obtained for each momentum region, and any significant difference
among the different target nuclei is not observed.

Next, how many particles other than K+ and K− particles are detected as K+ and K−, or
which pass the particle identification and the good track cut, is discussed in each momentum region.
Figure C.3 and Table C.2 shows the contamination of the other than K+ and K− in the particles
detected as K+ and K−, and Figure C.4 and Table C.3 shows the probabilities that µ+ and µ− are
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detected as K+ and K−, respectively. Note that the branching ratio of the K± → µ±νµ mode is
64.43 ± 0.17 %, and the information of K+ and K− particles on time of flight and momentum can
be extracted from the µ± tracks if the decay happens at downstream of the LEPS spectrometer. No
significant difference can be seen among the different targets.

Figure C.3: The probabilities that other than K+ and K− particles are detected as K+ and K− are
shown.

Table C.2: Contamination in the particles detected as K+ and K−
p (GeV/c) Li C Al Cu

K+

0.5—0.6 0.0931±0.0048 0.0876±0.0048 0.0854±0.0047 0.0794±0.0045
0.6—0.7 0.0740±0.0035 0.0769±0.0036 0.0818±0.0037 0.0845±0.0038
0.7—0.8 0.0786±0.0034 0.0770±0.0034 0.0775±0.0034 0.0785±0.0033
0.8—0.9 0.0774±0.0036 0.0757±0.0036 0.0744±0.0035 0.0744±0.0035
0.9—1.0 0.0779±0.0044 0.0743±0.0043 0.0736±0.0042 0.0790±0.0042
1.0—1.1 0.0711±0.0056 0.0718±0.0056 0.0713±0.0056 0.0771±0.0055
1.1—1.2 0.0815±0.0094 0.0750±0.0090 0.0756±0.0092 0.0772±0.0089
1.2—1.3 0.0577±0.0187 0.1214±0.0248 0.1304±0.0248 0.0941±0.0205
K−

0.5—0.6 0.1107±0.0053 0.1097±0.0054 0.1035±0.0053 0.1028±0.0052
0.6—0.7 0.1026±0.0041 0.1047±0.0042 0.1007±0.0041 0.1108±0.0042
0.7—0.8 0.1015±0.0039 0.1046±0.0040 0.1059±0.0040 0.1115±0.0040
0.8—0.9 0.1064±0.0043 0.1069±0.0042 0.1061±0.0043 0.1143±0.0043
0.9—1.0 0.1019±0.0051 0.1021±0.0051 0.1045±0.0051 0.1060±0.0049
1.0—1.1 0.0995±0.0067 0.1182±0.0074 0.1044±0.0067 0.1058±0.0066
1.1—1.2 0.0856±0.0099 0.0951±0.0107 0.1104±0.0114 0.1297±0.0118
1.2—1.3 0.1111±0.0234 0.1166±0.0251 0.1437±0.0271 0.1170±0.0234
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Figure C.4: Probabilities that µ+ and µ− are detected as K+ and K−

Table C.3: Probabilities that µ+ and µ− are detected as K+ and K−
p (GeV/c) Li C Al Cu

K+

0.5—0.6 0.0365±0.0031 0.0335±0.0030 0.0344±0.0031 0.0341±0.0030
0.6—0.7 0.0333±0.0024 0.0320±0.0024 0.0351±0.0025 0.0339±0.0024
0.7—0.8 0.0377±0.0024 0.0359±0.0024 0.0338±0.0023 0.0332±0.0022
0.8—0.9 0.0339±0.0024 0.0354±0.0025 0.0352±0.0025 0.0360±0.0025
0.9—1.0 0.0426±0.0033 0.0324±0.0029 0.0416±0.0032 0.0367±0.0030
1.0—1.1 0.0351±0.0040 0.0352±0.0040 0.0380±0.0041 0.0360±0.0038
1.1—1.2 0.0366±0.0065 0.0387±0.0066 0.0288±0.0058 0.0397±0.0065
1.2—1.3 0.0128±0.0090 0.0405±0.0150 0.0435±0.0150 0.0396±0.0137
K−

0.5—0.6 0.0374±0.0032 0.0358±0.0032 0.0335±0.0031 0.0308±0.0030
0.6—0.7 0.0348±0.0025 0.0310±0.0024 0.0290±0.0023 0.0327±0.0024
0.7—0.8 0.0354±0.0024 0.0322±0.0023 0.0315±0.0023 0.0326±0.0022
0.8—0.9 0.0363±0.0026 0.0373±0.0026 0.0349±0.0025 0.0357±0.0025
0.9—1.0 0.0322±0.0030 0.0348±0.0031 0.0330±0.0030 0.0377±0.0030
1.0—1.1 0.0350±0.0041 0.0396±0.0045 0.0356±0.0041 0.0316±0.0037
1.1—1.2 0.0315±0.0062 0.0343±0.0066 0.0394±0.0071 0.0367±0.0066
1.2—1.3 0.0167±0.0095 0.0859±0.0219 0.0719±0.0200 0.0426±0.0147

C.1.2 χ2 probability in the good track cut

The tightest cut in the good track cut is χ2 probability cut. As is discussed in Appendix C.1.5, the
efficiency of drift chamber in the nuclear target run period is much lower than that in the LH2 target
run periods. Thus, χ2 probability cut can be too tight. Number of φ events is investigated changing
the χ2 probability limit (default: 0.02) under the condition that the cuts discussed in Section 3.4
except for the χ2 probability cut is applied. Table C.4 summarizes the number of φ events with
these ratios to those without any χ2 probability cut. There is little change in the number of φ events
by loosening the χ2 probability cut from the default value though exclusion of χ2 probability cut
make ∼15% increase in the number of φ events. Figure C.5 shows K+K− invariant mass distribution
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Table C.4: Number of φ events as a function of the χ2 probability limit
χ2 probability Li C Al Cu

0.100 234 (56.4±2.4%) 186 (60.6±2.8%) 195 (58.9±2.7%) 166 (59.5±2.9%)
0.050 292 (70.4±2.2%) 222 (72.3±2.6%) 238 (71.9±2.5%) 197 (70.6±2.7%)
0.040 301 (72.5±2.2%) 233 (75.9±2.4%) 248 (74.9±2.4%) 211 (75.6±2.6%)
0.030 320 (77.1±2.1%) 246 (80.1±2.3%) 263 (79.5±2.2%) 227 (81.4±2.3%)
0.020 348 (83.9±1.8%) 267 (87.0±1.9%) 286 (86.4±1.9%) 238 (85.3±2.1%)
0.010 348 (83.9±1.8%) 267 (87.0±1.9%) 287 (86.7±1.9%) 238 (85.3±2.1%)
0.001 349 (84.1±1.8%) 268 (87.3±1.9%) 288 (87.0±1.8%) 239 (85.7±2.1%)
– 415 307 331 279

Figure C.5: K+K− invariant mass distributions with/without the χ2 probability cut. The blue lines
show the K+K− invariant mass distributions without the χ2 probability cut, and the red lines show
those with the χ2 probability cut.

with/without the χ2 probability cut.

The K+K− tracks that does not pass the χ2 probability cut also makes the φ meson peaks in
the K+K− invariant mass distributions as shown in Figure C.5, and these can be actually associate
with the φ mesons. The good track cut can be too tight. Figure C.6 shows χ2 probability distribu-
tions for K+K− tracks, and the mean of each distribution (0.36∼0.39) is smaller than that of LH2
target (∼0.41).
Worse χ2 probability distribution in the nuclear target run periods can be due to a bad software SVTX
alignment. The SVTX detector has been replaced before and after the nuclear target run period. A
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Figure C.6: χ2 probability distribution for K+K− tracks

precise software SVTX alignment is needed, but the method by using the reaction γ+p→ K++Λ can
not be used for the nuclear target runs like LH2 target since the reacted nucleon is not at rest. Instead
a crossing two tracks at a point method has been used for a precise shift and rotation alignment of
the SVTX module by module. In this method, the modules are aligned so that the closest distance
of the two tracks are minimum.

Figure C.7: χ2 probability distributions for the K+K− tracks as a function of the x, y-global SVTX
shifts. The left panel shows the x-global SVTX shift, and the right one shows the y-global SVTX
shift.
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Figure C.8: Number of K+K− tracks passing the good track cut as a function of the x, y-global
SVTX shifts. The left panel shows the x-global SVTX shift, and the right one shows the y-global
SVTX shift.

The mean of χ2 probability distribution is comparably sensitive to the x, y-global shift of SVTX,
thus all the K+K− events are re-analyzed with applying x, y-global SVTX shift to check how well
the crossing two tracks at a point method works. Figure C.7 shows the mean of χ2 probability
distributions as a function of the x, y-global SVTX shifts. Figure C.8 shows the number of K+K−

events which pass the good track cut as a function of the x, y-global SVTX shifts. Although the
current setting (0 mm x, y-global shift) does not have the largest mean of χ2 probability distribution,
the setting seems to be in the optimum region. Also the global shift does not affect the number of

Figure C.9: Run dependence of the mean of the χ2 distributions and the width of z vertex distribu-
tions for the start counter. The left panel shows run dependence of the mean of the χ2 probability
distributions for the K+K− tracks, and the right one shows the run dependence of the z-vertex width
(σ) of the start counter for the two track events.
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K+K− tracks so much which pass the good track cut.
Inappropriate threshold values for the DC width can make mean of χ2 probability distribution

smaller. The relation of the drift time to the drift length for the drift chamber would change drastically
run by run if this threshold values were too small. In order to check that the threshold is proper
or not, the relation of the drift time to the drift length is re-calibrated under the condition that the
threshold is 100 channels (about 50 nsec). The difference of the estimated resolutions between current
and re-calibrated ones is less than 0.001 mm, and the difference of the drift lengths is 0.003 mm at
maximum.

Mean of χ2 probability distribution is also very stable in the nuclear target run period. The left
panel of Figure C.9 shows the run dependence of the mean of the χ2 probability distributions for
the K+K− tracks, the right one shows the run dependence of the z-vertex width (σ) of the start
counter for two track events, where the fitting function is a sum of a Gaussian and one dimensional
polynomial, and no drops or no changes are observed in both run dependences.

C.1.3 z-vertex resolution

The events produced at the target are selected by the z-coordinate of the vertex point. the contam-
ination of the start counter events is estimated by the z-vertex resolution. The z-vertex resolution
depends on the opening angle of K+K− tracks, which is checked in the MC simulation. Because
one sheet of the Cu target is thinnest (1 mm thick), the comparison of the z-vertex distributions
between the real and MC simulation data for Cu is the best way to check the resolution. Figure C.11
shows z-vertex distributions of the φ→ K+K− events for Cu in each opening angle region, where the
invariant mass cut discussed in Subsection 3.4.7 has been used. These distributions are fitted with a
function

Fz(x) =
3X
i=1

ci√
2πσi

exp

Ã
−(x−mi)

2

2σ2i

!
+ C2, (C.1)

Figure C.10: Opening angle dependence of z-vertex resolutions for φ → K+K− events in the MC
simulation. The red, blue, and green points show the z-vertex resolutions for the upstream, middle,
and downstream Cu sheets.
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Table C.5: Fitting results of z-vertex resolutions in the MC simulation
Opening Angle c m σ C χ2/n

0.10—0.15
upstream 324.5±20.5 -961.65±0.62 10.682±0.741
middle 329.0±16.3 -925.15±0.53 9.066±0.524
downstream 317.8±15.8 -890.00±0.33 6.845±0.377

0.623±0.143 263.5/390

0.15—0.20
upstream 842.0±22.6 -960.44±0.21 7.637±0.195
middle 829.9±22.1 -925.55±0.16 5.637±0.157
downstream 835.3±21.8 -890.12±0.11 4.248±0.115

1.057±0.077 341.5/390

0.20—0.25
upstream 2277.9±35.4 -960.43±0.08 5.226±0.080
middle 2278.9±34.9 -925.29±0.07 4.157±0.059
downstream 2295.6±34.8 -890.12±0.05 3.083±0.045

1.452±0.063 538.8/390

0.25—0.30
upstream 2771.1±38.1 -959.58±0.07 4.620±0.056
middle 2917.9±38.9 -924.62±0.05 3.566±0.042
downstream 2989.6±39.2 -889.76±0.04 2.708±0.031

1.359±0.055 561.8/390

0.30—0.35
upstream 1317.8±26.4 -959.09±0.09 4.455±0.081
middle 1381.9±26.9 -924.38±0.07 3.572±0.063
downstream 1457.8±27.4 -889.71±0.05 2.848±0.045

1.059±0.053 397.6/390

0.35—0.40
upstream 448.8±15.5 -958.55±0.16 4.472±0.135
middle 499.0±16.2 -924.11±0.12 3.578±0.106
downstream 539.1±16.7 -889.37±0.09 2.914±0.074

0.754±0.049 302.7/390

0.40—0.50
upstream 196.1±10.4 -958.28±0.26 4.669±0.218
middle 254.9±11.8 -923.79±0.19 3.883±0.183
downstream 256.5±11.6 -889.29±0.14 2.950±0.116

0.613±0.049 285.9/390

assuming that each peak corresponding to each sheet of Cu has a Gaussian shape, and fitting is
made by the maximum likelihood method [69]. Figure C.11 shows the fitting results, and Table C.1.3
summarizes the fitting results. Figure C.10 shows the z-vertex resolution as a function of the
opening angle. The narrower opening angle makes the resolution worse simply due to the geometry
of the tracks. The extremely larger opening angle also makes it worse slightly as the opening angle
becomes larger. The K+ and K− with lower momenta decay from φ mesons for the large opening
angle events. The effect of multiple scattering in a unit length is larger for the lower momentum, and
the path lengths with which these particles penetrate in the target materials are longer because these
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Figure C.11: z-vertex distributions for φ → K+K− events in the MC simulation. Clearly, the
resolution of the z-vertex is poorer for the smaller opening angles.

Figure C.12: z-vertex distributions for φ→ K+K− events in the real data. The left and right panels
show the z-vertex distributions for the events with the opening angle from 0.20 to 0.25 and for those
with the opening angle from 0.25 to 0.30, respectively.
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tracks have comparably larger angles to z-axis.
Figure C.12 shows z-vertex distribution of K+K− tracks for Cu in the real data, where the

invariant mass cut discussed in Subsection 3.4.7 has been also applied here. In the real data, the peak
corresponding to the start counter is also assumed to have a Gaussian shape and the fitting function
is

Fz(x) =
4X
i=1

ci√
2πσi

exp

Ã
−(x−mi)

2

2σ2i

!
+ C2. (C.2)

Table C.6: Fitting results of z-vertex resolutions in the real data
Opening Angle c m σ C χ2/n

0.20—0.25
Upstream 57.8±10.1 -962.13±0.90 4.929±0.622
Middle 68.2±10.8 -925.95±0.59 3.576±0.431
Downstream 47.7±9.0 -891.43±0.41 2.046±0.361
Start Counter 61.9±10.3 -854.07±0.55 3.156±0.408

0.269±0.062 68.6/107

0.25—0.30
Upstream 49.9±9.1 -959.22±0.61 3.344±0.423
Middle 64.0±11.7 -925.53±1.10 3.446±1.812
Downstream 68.2±10.7 -890.99±0.44 2.844±0.310
Start Counter 63.3±10.3 -853.73±0.31 1.899±0.215

-0.078±0.208 42.4/107

Table C.1.3 shows the fitting results. Table C.7 summarizes the comparison of the z-vertex resolutions
for φ→ K+K− events between the real and MC simulation data. No significant difference is observed

Table C.7: Comparison of the z-vertex distribution between the real and MC simulation data
Opening Angle Real data MC simulation

0.20—0.25
upstream 4.929±0.622 5.226±0.080
middle 3.576±0.431 4.157±0.059
downstream 2.046±0.361 3.083±0.045

0.25—0.30
upstream 3.344±0.423 4.620±0.056
middle 3.446±1.812 3.566±0.042
downstream 2.844±0.310 2.708±0.031

though the results of the real data have a little bit smaller values (better resolutions). Thus, the esti-
mation of z-vertex resolution in the MC simulation is reliable. The z-vertex resolution at downstream
is important to separate the start counter events from the target events by the z-vertex cut. The
closest distance between the target and start counter is 10 mm for Li, and which is the minimum.
When the opening angle were required as θ12 = 0.10 ∼ 0.15, the events from the target and the start
counter would be separated more clearly. Figure C.13 shows the opening angle distribution for each
target. The small opening angle events which have a poor z-vertex resolution are a small fraction
in the total, and the contamination of the start counter events are negligibly small as discussed in
Subsection 3.6.1.
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Figure C.13: Opening angle distribution for φ→ K+K− events

C.1.4 Momentum resolution

The performance of the spectrometer itself is common for all the targets, and only the energy loss
and multiple scattering in the target material can affect the momentum resolution.

The mass square resolution for the proton is well reproduced from the resolution of each detector
system in the wide momentum range for each target as shown in Figure 3.8 in Subsection 3.4.3. This
indicates the momentum resolution is well understood and is included in the geometrical acceptance
correction.

C.1.5 Efficiency of drift chambers

The ratio of e+e− events to hadron events are higher for the heavier nuclear target, thus the efficiency
of the drift chamber may drop for heavy nuclear target. The efficiency of the drift chamber for each
target is checked. The procedure of the estimation is as follows:

1. The single proton track events are selected to avoid the decay in flight events.

2. Tracking is performed under the condition that the information of the plane is not used in which
efficiency of the wire is wanted to know.

3. Straight line fitting is made using fitting points in the drift chamber that has the plane of
interest.
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4. The position that the charged particle goes through the plane of interest is determined by
interpolating or extrapolating the straight line.

5. Whether the wire is efficient or not is determined by whether the hit exists or not within the
two cell size (12 mm for DC1 and 20 mm for DC2) from the predicted position.

Figure C.14 shows the efficiency wire by wire.
The efficiencies for the wires of the DC2, DC3, and DC1X” are lower, especially they are only

about ∼70% for DC1X”. The threshold for the DC amplifier/discriminator cards, and the operating
high voltages were not optimized in the nuclear target run periods. The supplied high voltage can
be too low. Another guess that the software threshold for the TDC width should be too high has
been abandoned because the efficiencies are not improved even if the TDC width cut is not applied.

Figure C.14: Efficiency of drift chambers
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Figure C.15 shows the efficiencies for the DC1” wires with and without the DC TDC width cut. No
significant difference is observed between both the conditions.

Figure C.15: Comparison of the efficiencies with/without the DC TDC width cut. No significant
difference is observed.

As a result, any significant difference of the efficiencies is not observed among the different targets,
these low efficiencies do not affect A-dependence.

C.1.6 Yield from the start counter

The yields from the start counter are investigated to confirm the normalization by the tagger hits,
by the live time, by the efficiency of the analyzer, and by the attenuation of the photon flux. The
yields should be the same for all the nuclear targets because the start counter and its downstream is
common. The yield Ysta is defined as

Ysta =
N

NγηDAQηanaηatt(StartCounter)
, (C.3)

where N is the number of events. Note that the geometrical acceptance for the start counter events
is common. The Ysta is estimated for π

+π− events and φ → K+K− events. The π+π−, π+p, π−p,
and K+K− events from the start counter are selected as

• number of tracks should be 2,
• number of tagger hits should be 1,
• closest distance should be less than 5 mm,
• particles associated with tracks should π+π−, π+p, π−p, and K+K−,

• both the two tracks should pass the good track cut,
• opening angle of the two tracks should be less than 0.15, and
• z-vertex should be −863 ≤ z < −840.
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Figure C.16: π+π− yield for the start counter. The left panel shows the yields for the vertically
polarized data, and the right ones shows those for the horizontally polarized data.

Table C.8: π+π− yield for the start counter
Li C Al Cu

#Events (Vert.) 297 307 292 855
Y (Vert.) 85.5±5.0 90.7±5.2 82.3±4.8 85.9±2.9
#Events (Horz.) 281 250 347 857
Y (Horz.) 100.8±6.0 111.7±7.1 101.7±5.5 104.9±3.6

Figure C.17: π+p yield for the start counter. The left panel shows the yields for the vertically
polarized data, and the right ones shows those for the horizontally polarized data.

Table C.9: π+p yield for the start counter
Li C Al Cu

#Events (Vert.) 450 435 399 1258
Y (Vert.) 129.6±6.1 128.5±6.2 112.4±5.6 126.4±3.6
#Events (Horz.) 348 299 439 1044
Y (Horz.) 124.8±6.7 133.6±7.7 128.6±6.1 127.7±4.0
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Figure C.18: K+K− yield for the start counter. The left panel shows the yields for the vertically
polarized data, and the right ones shows those for the horizontally polarized data.

Table C.10: K+K− yield for the start counter
Li C Al Cu

#Events (Vert.) 31 20 18 59
Y (Vert.) 8.9±1.6 5.9±1.3 5.1±1.2 5.9±0.8
#Events (Horz.) 14 22 20 64
Y (Horz.) 5.0±1.3 9.8±2.1 5.3±1.2 7.2±0.9

Tables C.8, C.9, and C.10 summarize the number and the yield of π+π−, π+p, and K+K−

events, and Figure C.16, C.17, and C.18 show A-dependence of the yields. The yields are constant
independently of A for the various reactions, thus it can be concluded that the normalization factors
discussed in Section 3.7 do not have a serious problem.

C.2 Different kinematical conditions

C.2.1 z-vertex dependence of the geometrical acceptance

The target positions and thicknesses are different among the four nuclear targets although the center
of z positions and their standard deviations have been aimed to be set the same. Because the
attenuation of the photon flux in the target material is not implemented in the MC simulation, the
number of generated φ events are corrected according to z coordinate of the produced points according
the the mass attenuation length discussed in Subsection 3.7.3. Figure C.19 shows z distributions of
the produced points in the MC simulation with the correction of the photon flux attenuation.

In order to check how precise z dependence of the yield is estimated in the MC simulation, the
yield ratios between the real and MC simulation data are investigated in the following three z-vertex
regions.

−965.0≤z<−925.0, −925.0≤z<−895.0, and − 895.0≤z<−864.0 for Li
−980.0≤z<−942.5, −942.5≤z<−907.5, and − 907.5≤z<−864.0 for C, Al, and Cu

The attenuation of the photon flux in the target material is also corrected in the MC simulation.
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Figure C.19: Yield as a function of z-vertex in the MC simulation.

Figures C.20, and C.21 show these ratios in the various conditions. The ratios are constant, thus z
vertex distributions are reproduced in the MC simulation, and this implies the geometrical acceptance
of the detector system is well understood.
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Figure C.20: Yield ratio between the real and MC simulation data (1). Figures show the yield ratios
as a function of z-vertex for Li and C.
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Figure C.21: Yield ratio between the real and MC simulation data (2). Figures show the yield ratios
as a function of z-vertex for Al and Cu.
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C.2.2 Center of mass energy

The incident γ energy distributions are common among the different targets, while the effective
ones to the nucleon differ due to the difference of the Fermi momentum distributions. The Eγ
dependence of the cross section near the threshold region can change drastically [79]. This can affect
the A-dependence of the yields. Figure C.22 shows the Fermi motion that φ mesons are produced

Figure C.22: Fermi momentum distribution for the detected φ mesons

Figure C.23: Fermi momentum distribution for the produced φ mesons
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and detected in the MC simulation, and Figure C.23 shows that for the produced ones. The heavier
target has a larger momentum. As an estimation of the effective incident γ energy, the distributions of
center of mass energy between φ meson and reacted nucleonW =

√
s are investigated for the different

targets. Figure C.24, C.25 shows these for the detected, and the produced φ mesons, respectively.

Figure C.24: Center of mass distribution for the detected φ mesons

Figure C.25: Center of mass distribution for all the produced φ mesons
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Figure C.26: Incident γ energy distribution for the detected φ meson (MC)

Figure C.27: Incident γ energy distribution for the detected φ meson for LH2 (MC)

There is little difference in the W distributions, and the effect of the Fermi motion to the effective
γ energy can be negligible. Figure 3.25 in Subsection 3.5.2 shows the γ energy distribution that φ
mesons are detected in the real data. These also differ little among the different targets. Figures C.26
and C.27 show those in the MC simulation.
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C.3 Momentum mis-calibration

If the momentum calibration is wrong due to some reason such as wrong energy loss correction and
so on, the missing energy distributions change. In this section, the correction of the momentum is
discussed.

Figure C.28: Correction factor Cp to the measured momentum

The deviation of the KK invariant mass centroid can imply the momentum mis-calibration. The
correction Cp needed for pmeas is investigated, and Cp is defined as

Cp =
pmeas
pK

− 1, (C.4)

where pmeas stands for the measured momentum by the spectrometer, Figure C.28 shows Cp distri-
butions in the MC simulation. The peaks are positioned at zero. The energy loss correction applied
to the momentum is reasonable. Figure C.29 shows the relation of the momentum correction (%) to
the centroid of the KK invariant mass distribution, where the centroid is obtained by fitting with the
Breit-Wigner function between 1000 and 1060 MeV. In order to adjust the centroid to the nominal
φ meson mass (1019.456 MeV) [49], the momentum corrections of -0.317%, -1.138%, -0.047%, and
+0.176% are needed for each target. Figure C.30 shows the comparison of the missing energy distri-
butions with and without this additional momentum correction. The momentum correction makes
the missing energy larger especially for the C target.

Figures C.31 show the excess distributions of the measured momentum when the energy loss
is estimated under the condition that the target is placed at 1 mm upstream/downstream of the
actual target position. The events with the z-vertex between the target sheets concentrate at zero
in the excess distributions because the path lengths in the target material do not change. The
1 mm mis-measurement of the target z position makes 0.02%, 0.04%, 0.05%, and 0.02% momentum



128 APPENDIX C. SYSTEMATIC UNCERTAINTY

Figure C.29: Relation of the momentum correction to the centroid of the KK invariant mass distri-
bution

Figure C.30: Comparison of the missing energy distributions with/without momentum correction

mis-measurement. It is difficult to reproduce the 1% momentum correction in the C target by the
ambiguity of the z position of the target. The ambiguity of target thickness, which includes the target
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Figure C.31: Excess of the measured momentum. The upper and lower panels show the excess under
the condition that the target is placed at 1 mm upstream and 1 mm downstream of the actual target
position.
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thickness itself and the effective target thickness due to the tilt, is much less than 1 mm, which can
not explain 1% momentum correction in C, either. Then, the observed deviation of the K+K− peak
positions are made by the statistical effects.

C.4 KK background from Λ(1520) photo-production

The background candidates in the KK invariant mass distribution are non-resonant KK photo-
production, and Λ(1520) photo-production on the proton in the nucleus as

γ + p→ K++ Λ(1520)
Λ(1520)→ K− + p (C.5)

Figure C.32: Comparison between non resonant KK and KK from Λ(1520)
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Non-resonant KK background is discussed in Subsection 3.6.3. Figure C.32 shows K+K− invariant
mass distributions for non-resonant KK photo-production and those for Λ(1520) photo-production
on the proton in the nucleus. Energy dependence of the cross section is assumed to be proportional
to the phase volume in both the reactions. Similar distributions are obtained especially for the heavy
nuclear targets.

Table C.11: Each cut condition has two rows, each yield column shows the yield of φ events in
the first row, the KK background contribution due to Λ(1520) photo-production in the second row.
The YN/Y0, σφN/α, and χ

2 columns show the fitting results and χ2 of the fitting with the function
Y (A) = YNAeff(A,σφN ) and Y (A) = Y0A

α in the first and second rows, respectively.
Cut Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN / Y0 σφN (mb) / α χ2

30 MeV Cut1.256± 0.094 1.641± 0.138 3.375± 0.250 6.045± 0.485 0.259± 0.041 31.7+12.2−8.8 1.16
0.094±0.022 0.124±0.035 0.210±0.057 0.342±0.110 0.289± 0.050 0.733± 0.057 1.84

From Li 1.459± 0.134 1.711± 0.198 3.684± 0.285 6.534± 0.551 0.310± 0.055 37.3+18.5−11.8 2.09
0.099±0.022 0.146±0.037 0.317±0.070 0.390±0.114 0.338± 0.074 0.714± 0.069 2.94

From Each 1.459± 0.134 1.834± 0.197 3.610± 0.305 6.795± 0.573 0.310± 0.056 36.3+17.9−11.6 0.82
0.099±0.022 0.146±0.037 0.317±0.070 0.390±0.114 0.339± 0.072 0.718± 0.067 1.84

The fittings are made for the yields of 30 MeV missing energy cut, and those with the coherent
contributions are subtracted assuming the shape of the background KK invariant mass distribution
is the same as that of Λ-KK photo-production. Table C.4 summarizes the fitting results with the
functions Y (A) = YNAeff(A,σφN ), and Y (A) = Y0A

α. The obtained A-dependence and σφN with
the KK background as Λ(1520) photo-production is the same as those with the KK background as
non-resonant KK photo-production discussed in Subsection 3.6.3.
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Incoherent and coherent φ
photo-production

D.1 Missing mass

The missing mass mX distributions for the reaction γp → K+K−X have been also investigated
assuming that the target is a proton (nucleon) at rest. Figure D.1, D.2 show the missing mass mX

Figure D.1: Missing mass mX of γp→ K+K−X for the incoherent process in the MC simulation
data. The blue lines show all the events, and the red ones show the events with |t|< 0.1GeV2. The
green lines show the nominal mass of the proton.

of γp→K+K−X for the incoherent, coherent processes obtained by the MC simulation, respectively.
The peak position of the missing massmX for γp→K+K−X for the incoherent process is positioned at
the proton mass smeared out by the experimental resolution and Fermi motion, and it is independent

132
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Figure D.2: Missing mass mX of γp→K+K−X for the coherent process in the MC simulation data.
The blue lines show all the events, and the red ones show the events with |t|< 0.1GeV2. The green
lines show the nominal mass of the proton.

Figure D.3: Missing mass mX of γp→K+K−X for the start counter. The left panel shows the events
with |t|<0.1GeV2, and the right one shows those with |t|≥0.1GeV2. The red lines show the nominal
mass of the proton.

of the momentum transfer square t. On the other hand, the missing mass mX for the coherent process
is lower than the proton mass. Thus, the enhancement at the missing mass mX lower than than the
proton mass can show the existence of the coherent process.
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Figure D.3 shows the missing mass mX for the reaction γp→K+K−X in the start counter for
|t| < 0.1 GeV, and |t| ≥ 0.1 GeV. The condition |t| < 0.1 GeV makes the peak position lower,
this can imply the small |t| events mainly come from coherent process [80]. Although the incoherent
process is expected to be dominant due to the kinematical condition in the incident γ energy range
1.5—2.4 GeV, the contribution of the coherent process can not be neglected.

Figure D.4: Missing mass distributions MX for γp→ K+K−X

Figure D.5: Correlation between missing energy and missing mass mX of γp→φ+X
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Figure D.4 shows the missing mass distributions for the reaction γp→K+K−X . It seems also
difficult to separate the coherent and incoherent processes by means of the missing mass distributions
for the reaction γp→K+K−X.

Figure D.5 shows the correlation between missing energy and missing mass mX of γp→K+K−X ,
and more events concentrate in the lower missing energy and lower missing mass region for the lighter
target, this also implies lighter targets have more coherent process events.

D.2 ν-q2 correlation

In order to separate incoherent and coherent processes, the correlation between energy transfer ν and
three dimensional momentum transfer q2 was investigated, where ν = Eφ − Eγ , and q2 = |~pφ − ~pγ |2.
The correlation is described as ν =

q
m2
N + q

2 −mN for incoherent process, and

ν =
q
m2
A + q

2 −mA for coherent process,
(D.1)

where nucleon is assumed to be at rest for the incoherent process, and mN and mA stand for the
nucleon and nucleus mass, respectively. Figures D.6 and D.7 show the correlations for incoherent and
coherent processes obtained by the MC simulation, respectively. The MC simulation data shows the
equation (D.1) are valid for each process. Figure D.8 shows the correlation in the real data. It can
be concluded that there is few coherent process events in large q2 region, but two processes cannot
be separated by means of this correlation in small q2 region. In order to confirm the equation (D.1)
in the real data, the correlation between energy transfer ν and momentum transfer q2 for the LH2

Figure D.6: ν-q2 correlation for the incoherent process in the MC simulation. The red lines show the
predicted lines for incoherent production, and the blue ones show those for coherent production.
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Figure D.7: ν-q2 correlation for the coherent process in the MC simulation. The red lines show the
predicted lines for incoherent production, and the blue ones show those for coherent production.

Figure D.8: ν-q2 correlation in the real data. The red lines show the predicted lines for incoherent
production, and the blue ones show those for coherent production.



D.2. ν-Q2 CORRELATION 137

target was investigated. Figures D.9 and D.10 show the correlations for the LH2 target in the MC
and the real data, respectively. Left panels show the ν2-q2 correlations and right ones show the ν-q2

correlations together with the expected correlation curves. Both the loci in the MC simulation and

Figure D.9: ν2-q2 and ν-q2 correlation for the LH2 target in the MC simulation. The red lines show
the predicted lines for the proton target.

Figure D.10: ν2-q2 and ν-q2 correlation for the LH2 target in the real data The red lines show the
predicted lines for the proton target.

real data for the proton target are consistent with the expected correlation curves. The events for
coherent production from a nucleus and those for production on the proton at rest are expected to
make clear loci in the ν-q2 correlation, while the events for incoherent production from a nucleus are
expected to spreads in the wide area due to the Fermi motion. It is difficult to separate the coherent
and incoherent processes especially for low |t| events.
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φ-N total cross section with various
cuts

E.1 Selecting kinematical region for the incoherent process

The 30 MeV missing energy cut has been adopted as discussed in Subsection 4.4 for selecting the
kinematical region for the incoherent process, and σφN is obtained to be 29.7

+11.7
−8.2 mb. In this section,

the σφN is estimated with various cuts to the yield for the kinematical region for the incoherent
process.

E.1.1 Excluding one of the four targets for the 30 MeV cut

In order to investigate the stability of σφN , the fitting has been made by excluding one of the four
targets. Table E.1 shows the fitting results. When the lightest or heaviest target Li, Cu was excluded,
the change of σφN is slightly large but it is still within the errors.

Table E.1: Fitting parameters excluding one of the four targets
YN σφN (mb) χ2

All 0.249± 0.040 29.7+11.7−8.2 1.06

w/o Li 0.219± 0.050 23.4+15.5−10.0 0.66

w/o C 0.264± 0.045 32.1+12.3−8.9 0.16

w/o Al 0.253± 0.042 31.7+14.1−9.2 0.63

w/o Cu 0.243± 0.044 27.7+18.2−11.6 1.03

E.1.2 Invariant mass

The σφN has been also estimated by changing the invariant mass cut. Since the cut points of the
invariant mass cut has been fixed independently of the target, a tight cut is not even for different
targets due to the different invariant mass resolution. The number of non-resonant K+K− events
between mmin and mmax is estimated as

#N(mmin ≤ IMKK < mmax)real

= #N(1050 ≤ IMKK < 1100 MeV)real × #N(mmin ≤ IMKK < mmax)MC
#N(1050 ≤ IMKK < 1100 MeV)MC

. (E.1)
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Table E.2: Fitting parameters tightening the invariant mass cut. The asterisk shows the standard
φ cut. Each cut condition has three rows, each yield column shows the yield of φ events in the first
row, the non-resonant KK background contribution in the second row, used number of KK events
in the third low. The YN/Y0, σφN/α, and χ

2 columns show the fitting results and χ2 of the fitting
with the function Y (A) = YNAeff(A, σφN ), Y (A) = Y0A

α in the first and second rows, respectively.
Cut Yield (Li) Yield (C) Yield (Al) Yield (Cu) C σφN (mb) χ2

1010—1030 1.205± 0.091 1.531± 0.130 3.159± 0.237 5.569± 0.455 0.255± 0.042 35.1+14.7−9.6 1.50
0.078±0.018 0.088±0.025 0.145±0.040 0.219±0.070 0.283± 0.050 0.719± 0.057 2.34
98,113 81,82 100,105 82,86

1005—1035*1.235± 0.095 1.634± 0.138 3.371± 0.250 6.061± 0.484 0.249± 0.040 29.7+11.7−8.2 1.06
0.116±0.026 0.131±0.037 0.214±0.058 0.326±0.104 0.281± 0.049 0.742± 0.057 1.66
104,118 90,88 110,112 95,90

1000—1040 1.223± 0.098 1.663± 0.144 3.445± 0.259 6.271± 0.503 0.240± 0.039 26.4+10.2−7.7 0.82
0.240±0.034 0.171±0.048 0.276±0.075 0.431±0.137 0.271± 0.039 0.759± 0.058 1.26
106,120 94,91 112,119 101,93

995—1045 1.234± 0.102 1.677± 0.149 3.503± 0.268 6.420± 0.520 0.238± 0.038 25.2+10.0−7.6 0.85
0.238±0.038 0.205±0.058 0.333±0.091 0.521±0.166 0.269± 0.050 0.767± 0.060 1.27
109,124 97,93 116,122 104,97

Table E.3: Fitting parameters tightening the χ2 probability cut. The asterisk shows the standard φ
cut. Each cut condition has three rows, and the format is as same as Table E.2.

Cut Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN/Y0 σφN (mb)/α χ2

P(χ2)≥0.02 1.235± 0.095 1.634± 0.138 3.371± 0.250 6.061± 0.484 0.249± 0.040 29.7+11.7−8.2 1.06
0.116±0.052 0.131±0.074 0.214±0.117 0.326±0.208 0.281± 0.049 0.742± 0.057 1.66
104,118 90,88 110,112 95,90

P(χ2)≥0.03 1.125± 0.091 1.515± 0.133 3.116± 0.240 5.752± 0.470 0.220± 0.036 26.7+10.8−7.9 0.77
0.110± 0.025 0.122± 0.035 0.184± 0.054 0.290± 0.097 0.248± 0.046 0.758± 0.060 1.23
104,108 90,88 110,112 95,90

P(χ2)≥0.04 1.076± 0.088 1.439± 0.129 2.947± 0.233 5.368± 0.450 0.216± 0.036 28.9+11.8−8.6 0.77
0.098± 0.024 0.110± 0.034 0.171± 0.052 0.225± 0.086 0.243± 0.045 0.747± 0.061 1.24

97,106 83,82 99,106 90,85

P(χ2)≥0.05 1.063± 0.087 1.376± 0.127 2.795± 0.227 5.017± 0.434 0.224± 0.038 34.1+14.7−10.3 0.92
0.087± 0.023 0.111± 0.034 0.171± 0.052 0.194± 0.080 0.249± 0.047 0.724± 0.061 1.54

90,103 77,79 92,102 83,79

P(χ2)≥0.06 0.996± 0.085 1.345± 0.125 2.666± 0.222 4.813± 0.426 0.208± 0.036 32.3+14.3−9.7 0.42
0.087± 0.023 0.101± 0.032 0.171± 0.053 0.194± 0.080 0.234± 0.045 0.729± 0.063 0.80

87,102 76,74 86,99 77,74

P(χ2)≥0.07 0.947± 0.083 1.263± 0.121 2.513± 0.215 4.607± 0.418 0.196± 0.035 31.7+14.5−10.0 0.47
0.081± 0.022 0.101± 0.032 0.152± 0.049 0.196± 0.081 0.219± 0.044 0.733± 0.065 0.90

84,94 75,71 82,95 75,70

P(χ2)≥0.08 0.905± 0.080 1.224± 0.119 2.466± 0.213 4.504± 0.414 0.183± 0.032 29.3+13.5−9.2 0.47
0.075± 0.021 0.091± 0.031 0.152± 0.049 0.197± 0.081 0.207± 0.042 0.743± 0.066 0.82

75,86 70,63 77,86 72,64

P(χ2)≥0.09 0.868± 0.079 1.172± 0.117 2.420± 0.212 4.404± 0.409 0.171± 0.031 27.2+12.7−8.8 0.63
0.069± 0.020 0.090± 0.030 0.152± 0.049 0.195± 0.080 0.194± 0.040 0.754± 0.067 0.98

72,82 69,59 76,84 71,62
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Table E.2 shows the fitting results. No significant changes of σφN are observed even if the invariant
mass cut is tightened.

E.1.3 χ2 probability cut

The σφN has been also checked tightening the χ2 probability cut of each track. Table E.3 shows the
fitting results. Any significant changes of the φ-N total cross section also cannot be observed even if
the χ2 probability cut for each track is tightened.

E.1.4 Incident γ energy

Table E.4 shows the fitting parameters under the condition that the incident γ energy is required as
Eγ ≥ 2.2 GeV and Eγ < 2.2 GeV, namely the averaged incident γ energy is hEγi=2.3 and 2.0 GeV,
respectively. Figure E.1 shows the yields as a function of mass number A together with fitting results.

Table E.4: Fitting parameters for different incident γ energies. Each cut condition has three rows,
and the format is the same as Table E.2.

Cut Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN/Y0 σφN (mb)/α χ2

hEγi = 2.3 GeV 0.719± 0.074 0.965± 0.104 2.090± 0.199 3.551± 0.366 0.144± 0.027 28.0+14.4−9.8 1.21
0.091±0.022 0.055±0.023 0.156±0.048 0.146±0.066 0.163± 0.037 0.750± 0.074 1.53

66,67 53,50 74,65 56,51

hEγi = 2.0 GeV 0.518± 0.059 0.649± 0.094 1.280± 0.152 2.476± 0.322 0.109± 0.022 35.0+27.0−14.4 0.58
0.022±0.013 0.096±0.037 0.059±0.035 0.214±0.098 0.120± 0.034 0.722± 0.095 0.96

38,51 37,38 37,47 39,39

Figure E.1: A-dependence for different incident γ energy regions. The solid and dashed curves show
the fitting results with the functions Y (A) = YNAeff(A) and Y (A) = Y0A

α, respectively.

E.1.5 Momentum of φ meson

Table E.5 shows the fitting parameters under the condition that the momentum of the measured φ
mesons is required as Pφ ≥ 1.8 GeV and Pφ < 1.8 GeV, namely the averaged momentum of the
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Table E.5: Fitting parameters different φ meson momentum regions. Each cut condition has three
rows, and the format is as same as Table E.2.

Cut Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN/Y0 σφN (mb)/α χ2

hPφi = 2.0 GeV0.631± 0.067 0.913± 0.100 1.892± 0.185 3.122± 0.337 0.132± 0.025 28.9+14.9−10.0 1.02
0.051±0.017 0.038±0.019 0.088±0.036 0.060±0.042 0.151± 0.034 0.740± 0.073 1.08

56,56 49,47 63,59 49,43

hPφi = 1.6 GeV0.600± 0.067 0.715± 0.097 1.474± 0.169 2.916± 0.350 0.118± 0.024 30.5+23.4−13.1 1.39
0.068±0.021 0.099±0.034 0.132±0.048 0.289±0.104 0.129± 0.037 0.741± 0.093 1.90

48,62 41,41 47,53 46,47

Figure E.2: A-dependence for different φ meson momentum regions. The solid and dashed curves
show the fitting results with the functions Y (A) = YNAeff(A) and Y (A) = Y0A

α, respectively.

φ mesons is hPφi=2.0 and 1.6 GeV/c, respectively. In the larger momentum or larger γ energy
condition, σφN becomes smaller although the statistical significance is poor.

E.1.6 Scattering angle in the γ-N center of mass system

If the momentum calibration is wrong due to some reason such as wrong energy loss correction and
so on, the missing energy distributions change. In order to suppress the mis-calibration effect of the
momentum measurement in separating coherent and incoherent processes, the scattering angle in the
γ-N center of mass frame cos θ∗ is considered.

The scattering angle cos θ∗ is obtained assuming that the target is nucleon at rest, and that γ
beam goes in a parallel direction with z-axis. Momenta of the kaons in γ-N center of mass frame is
described with given incident γ energy Eγ as,

pCMx = pLABx

pCMy = pLABy

pCMz = γf(p
LAB
z − βfE) = γfp

LAB

pLABz

pLAB
− βf

Ã
1 +

µ
mK

pLAB

¶2!1/2
, (E.2)

where βf is the velocity of the γ-N center of mass frame, and γf = 1/
q
1− β2f . The incident γ energy

ranges from 1.5 to 2.4 GeV, thus βf varies from 0.62 to 0.72. The scattering angle cos θ∗ is expressed
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Figure E.3: Scattering angle in the γ-N CM frame cos θ for the incoherent process

Figure E.4: Scattering angle in the γ-N CM frame cos θ for the real data



E.1. SELECTING KINEMATICAL REGION FOR THE INCOHERENT PROCESS 143

as

cos θ∗ =
pCMzsµ

pCMx

¶2
+

µ
pCMy

¶2
+

µ
pCMz

¶2 . (E.3)

Even if absolute value of each kaon momentum is wrong, the difference is canceled out between
numerator and denominator in cos θ∗ when the directions of the momenta in γ-N center of mass
frame are correct. This is approximately valid if the directions of the momenta in laboratory frame
are correct, and if the deviation of

pLABz

pLAB
− βf

Ã
1 +

µ
mK

pLAB

¶2!1/2
(E.4)

is small comparing to its mean value. Since the observed kaon momentum decaying from φ meson
ranges 0.5—1.3 GeV and the value of equation (E.4) ranges from -0.01 to 0.33 because pLABz /pLAB ' 1.
Although using cos θ∗ does not suppress the mis-calibration effect of the momentum measurement
in separating coherent and incoherent processes, it can be still useful to separate the coherent and
incoherent processes. Figure E.3 shows the expected cos θ∗ distribution for the incoherent processes

Figure E.5: Scattering angle in the γ-N CM frame cos θ for the coherent process

obtained by the Monte Carlo simulation, and Figure E.4 shows measured one. The prominent peaks
at cos θ∗ = 1 in the real data are the events which φ mesons were scattered at very small angles and are
thought to be the contribution of the coherent process. Figure E.5 shows the scattering angle for the
coherent process obtained by the MC simulation, where the slope of |t| distribution for the generated
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Table E.6: Fitting parameters for different cos θ∗ cuts. Each cut condition has three rows, and the
format is as same as Table E.2.

cos θ∗|max Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN/Y0 σφN (mb)/α χ2

No Cut 1.912± 0.112 2.419± 0.164 4.134± 0.276 7.553± 0.526 0.558± 0.067 70.8+31.7−19.0 0.44
0.122±0.052 0.160±0.081 0.330±0.143 0.371±0.215 0.543± 0.076 0.625± 0.047 1.94
188,160 145,122 137,149 123,115

0.94 1.189± 0.092 1.556± 0.138 2.886± 0.233 4.846± 0.434 0.311± 0.045 55.2+28.8−16.5 0.38
0.089±0.023 0.150±0.041 0.208±0.059 0.293±0.099 0.328± 0.058 0.650± 0.059 0.33
98,112 79,92 86,108 63,87

0.92 0.960± 0.085 1.345± 0.129 2.468± 0.218 4.238± 0.413 0.230± 0.038 43.6+22.2−13.5 0.22
0.081±0.023 0.121±0.037 0.179±0.056 0.273±0.098 0.255± 0.050 0.680± 0.065 0.26

80,85 68,76 70,92 54,74

0.90 0.813± 0.080 1.148± 0.121 2.105± 0.209 3.609± 0.396 0.194± 0.033 42.9+25.0−14.5 0.19
0.065±0.021 0.103±0.035 0.189±0.059 0.292±0.105 0.216± 0.047 0.682± 0.072 0.16

58,74 58,61 58,77 43,63

φ events in the simulation were fixed to be b = 11.6 × A0.674 GeV−2 obtained in Subsection 4.3.
Almost all the events are concentrated at cos θ∗ = 1 especially for the heavy targets. Although the
requirement cos θ∗ < cos θ∗max may suppress coherent φ events, it is difficult to distinguish the coherent
process from the incoherent one with good statistics for the light target nucleus (Li) by using cos θ∗.
Table E.1.6 shows normalized yield and fitting results.

E.2 Semi-coherent process

The missing energy distribution in the real data discussed in Subsection 4.4 has not been reproduced
by the linear sum of the missing energy distributions for coherent and incoherent productions. An
enhancement at 20—30 MeV from the sum of the incoherent and coherent missing energy distributions
exists in the missing energy distribution for all the nuclear targets in the real data. This may imply
the reaction mechanism contributes other than the coherent and incoherent processes. The reaction
process has been considered that the coherent condition satisfies in a part of nucleus when φ mesons
are produced. Let us call this mechanism as semi-coherent process. In this section, the missing energy
distributions for the semi-coherent process, where only a few nucleons satisfy the coherent condition
when φ mesons are produced, are discussed.

Figures E.6, E.7 and E.8 show the missing energy distributions for each target when the φ mesons
are produced on the A = 2—4 cluster in a nucleus, where binding energy and Fermi motion is not
taken into account. These distributions have a peak between the 0 MeV coherent one and about
80 MeV incoherent one. The missing energy distributions in the real data seem to be reproduced by
the coherent, incoherent, and semi-coherent processes. When the missing energy was calculated for
the proton target at rest (γp→K+K−p), the coherent process contributes the negative missing energy
area as shown in Figure E.9. Figure E.10 shows the missing energy distribution for the proton at rest
as a target when the φ mesons are produced on the A =2—4 cluster in a nucleus. All the distributions
of coherent and semi-coherent processes obtained by the Monte Carlo (MC) simulation contributes
to the negative γp→K+K−p missing energy region. On the other hand, the peaks of the incoherent
process in the MC simulation are positioned at 0 MeV rather symmetrically in the γp→K+K−p
missing energy distribution as shown in Figure E.11. Figure E.12 shows the γp→K+K−p missing
energy distribution in real data. An enhancement of the negative γp→K+K−p missing energy events
actually exists for all the target, and this comes from the coherent or the semi-coherent processes. The
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Figure E.6: Missing energy distributions for the A=2 semi-coherent process. The blue lines show all
the events, and the red ones show the events with |t|<0.1GeV2.

Figure E.7: Missing energy distributions for the A=3 semi-coherent process. The blue lines show all
the events, and the red ones show the events with |t|<0.1GeV2.
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Figure E.8: Missing energy distribution of the A=4 semi-coherent process The blue lines show all the
events, and the red ones show the events with |t|<0.1GeV2.

Figure E.9: Missing energy distribution of γp→K+K−p for the coherent process.
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Figure E.10: Missing energy distribution of γp→K+K−p for the A=2—4 semi-coherent process

Figure E.11: Missing energy distributions of γp→K+K−p for the incoherent process
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Figure E.12: Missing energy distributions of γp→K+K−p in the real data

enhancement at 20—30 MeV in the γA→K+K−A missing energy distribution can be attributed to be
the semi-coherent process because the coherent process makes a peak at 0 MeV in the distribution.
The missing energy for γp→ K+K−p is also effective since both the coherent and semi-coherent

Figure E.13: Efficiency of the missing energy cut for γp→K+K−p. The left panel shows the efficiency
for the vertically polarized photon data, and the right one shows that for the horizontally polarized
ones.

processes are distributed in the negative γp→K+K−p missing energy region as show in Figure E.10.
Figure E.13 shows the efficiency of the missing energy cut for the reaction γp→K+K−p. The yield
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Y H(A) and Y V(A) in Eq. (3.48) is divided also by this efficiency instead of the efficiency for the
missing energy Ex cut, and is given by

Y H(A) =
NH
φ

ηHMEPη
H
geoη

H
DAQη

H
anaηattN

H
tagNτ

, and

Y V(A) =
NV
φ

ηVMEPη
V
geoη

V
DAQη

V
anaηattN

V
tagNτ

,

(E.5)

where ηMEP shows the efficiency of the missing energy cut for the reaction γp→K+K−p. Table E.7
shows the fitting parameters together with the normalized yields by the missing energy cut for γp→
K+K−p, and the −30—0 MeV cut which can reject the almost all the coherent and semi-coherent
processes. The fitting results are consistent with those of 30 MeV missing energy Ex cut.

Table E.7: Fitting parameters for various missing energy cuts for the reaction γp→K+K−p. Each
cut condition has three rows, and the format is as same as Table E.2.

Cut Yield (Li) Yield (C) Yield (Al) Yield (Cu) YN/Y0 σφN (mb)/α χ2

−30 MeV 1.217± 0.093 1.591± 0.132 3.008± 0.236 5.930± 0.472 0.± 0.043 33.2+14.4−9.3 0.91
0.251±0.041 0.086±0.029 0.215±0.058 0.282±0.100 0.279± 0.051 0.728± 0.059 1.62
114,112 91,81 103,100 103,80

−20 MeV 1.017± 0.086 1.210± 0.116 2.554± 0.215 4.890± 0.434 0.198± 0.036 31.0+15.5−9.9 2.62
0.112±0.026 0.079±0.028 0.158±0.051 0.300±0.107 0.217± 0.046 0.744± 0.069 3.59
92,100 66,66 89,82 84,70

−10 MeV 0.804± 0.078 1.027± 0.109 2.204± 0.202 4.012± 0.399 0.155± 0.029 27.2+14.4−9.4 1.26
0.104±0.026 0.080±0.028 0.162±0.052 0.317±0.113 0.174± 0.040 0.757± 0.074 1.75

76,79 53,60 76,74 69,60

0 MeV 0.707± 0.073 0.822± 0.099 1.770± 0.182 3.048± 0.358 0.155± 0.028 41.3+29.9−15.4 1.83
0.090±0.024 0.084±0.030 0.147±0.050 0.331±0.119 0.166± 0.043 0.700± 0.085 2.62

67,69 46,47 57,66 53,48



Appendix F

Description of nuclei

F.1 Fermi motion in a nucleus

The treatment of the Fermi motion in the MC simulation g3leps is discussed in this section [84].

F.1.1 Harmonic oscillator model

The harmonic oscillator model is discussed, which is implemented in g3leps for calculating the Fermi
motion.

A phenomenological shell model based on the Schrödinger equation for the single particle level is(
− h̄

2

2m
∇2 + V (~r)

)
Φi(~r) = ²iψi(~r) (F.1)

with a prescribed potential V (~r). A harmonic oscillator potential can be described as

V (r) =
1

2
mrω2. (F.2)

In a spherical coordinates, the wave function under the potential can be expanded as
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where Lmn is generalized Laguerre function and the harmonic oscillator parameter b =
p
h̄/mω. The

normalization factor is determined in the following condition.
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Therefore the normalization factor is determined as the equation (F.5).

Nnl =

s
2n+l+1(n− 1)!

(2n+ 2l − 1)!!√πb3 (F.5)

The wave function in momentum space is given in the Fourier transform of that in the coordinate
space.
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Thus the nucleon density in momentum space n(~k) is described in equation (F.7).
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The relation bk = r/b introduce the following rule of the variable transformation.
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, (F.9)

where Dirac’s delta function is

δ(~r) =
1

(2π)3

Z
exp(i~k · ~r)d~k. (F.10)

The nucleon density N(k) which has an absolute momentum p = h̄k is described as equation (F.11).

N(k) = 4πk2n(k)

= 4πk2N2
nlb

6(b2k2)l
½
L
l+ 1

2
n−1

³
b2k2

´¾2
exp

³
−b2k2

´
(F.11)

Nucleon density distribution in momentum space for each state is described in Table F.1.1 by using
the equation (F.9).
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Table F.1: Nucleon density for each state.
state n l n(k)

1s 1 0
4b3√
π
exp(−b2k2)

1p 1 1
8b3

3
√
π
b2k2 exp(−b2k2)

1d 1 2
16b3

15
√
π
b4k4 exp(−b2k2)

2s 2 0
8b3

3
√
π
(
3

2
− b2k2)2 exp(−b2k2)

1f 1 3
32b3

105
√
π
b6k6 exp(−b2k2)

2p 2 1
16b3

15
√
π
b2k2(

5

2
− b2k2)2 exp(−b2k2)

F.1.2 Comparison to the experimental data

The number of nucleons at each state in each target used in g3leps is described in Table F.1.2. The
isotopes 12C, 27Al, and 64Cu were assumed for the natural carbon, aluminum, and copper targets,
respectively. The harmonic oscillator parameter b = 1.93 fm was adopted for C [85], and A−1/15 was
assumed for the other nuclei to reproduce the Fermi motion for the 4He and 56Fe nuclei. Figure F.1
shows the comparison of the Fermi momentum distributions N(k) = 4πk2n(k) between the generated

Table F.2: Number of nucleons at each state.
6Li C Al Cu 4He 56Fe

state
p n p n p n p n p n p n

1s 2 2 2 2 2 2 2 2 2 2 2 2
1p 1 1 4 4 6 6 6 6 0 0 6 6
1d 0 0 0 0 5 6 10 10 0 0 10 10
2s 0 0 0 0 0 0 2 2 0 0 2 2
1f 0 0 0 0 0 0 8 11 0 0 6 8
2p 0 0 0 0 0 0 1 4 0 0 0 0

Figure F.1: Comparison of the Fermi motion with (e, e0p) experimental data.
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events in the Monte Carlo simulation code g3leps and the (e, e0p) experiment for 4He, C, and 56Fe
targets [86]. The harmonic oscillator model seems to underestimate the nucleon density in the higher
momentum region (p > 0.2GeV/c) comparing to the experimental results for every target.

F.2 Off-shell correction

When φ meson is produced on a nucleon in a nucleus, a part of energy is basically used to separate
the nucleon from the nucleus. If the separation energy is not used in φ photo-production from a
nucleus by some reason, the missing energy distribution shifts to the negative side. Figure F.2 shows

Figure F.2: Missing energy distribution with and without off-shell correction

the missing energy distribution for the incoherent process with and without off-shell correction [87]
obtained by the Monte Carlo simulation. The proton, neutron separation energies Sp, Sn are defined
as an energy to separate a proton, neutron from a nucleus as(

Sp =MA−p +mp −MA +me,
Sn =MA−n +mn −MA,

(F.12)

where MA and me stand for the masses of the nucleus and the electron, MA−p is the mass of the
proton and electron separated nuclues, MA−n denotes the mass of the neutron separated nuclei, and
mp, mn show the proton, neutron masses, respectively. The separation energies of

12C, for example,
are obtained from MA = m(

12C), MA−p = m(11B), and MA−n = m(11C). The proton and neutron
separation energies are summarized in Table F.2. Both the proton and neutron separation energies

Table F.3: Proton and neutron separation energy
target Sp (MeV) Sn (MeV)
7Li 9.98 7.25
12C 15.96 18.72
27Al 8.77 13.60
64Cu 7.20 7.92
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of 12C are very large because the p3/2 shell of the
12C nucleus is doubly closed.

The efficiency of the missing energy cut has been discussed in Subsection 4.4. The Fermi motion
and the binding energy has been taken into account. The considered binding energy is given for
the peripheral nucleon. The extra-separation energy is needed for the other than peripheral nucleon.
The averaged extra-separation energy (its standard deviation) has been estimated as 6.98 (6.00),
3.68 (5.24), 7.38 (6.98), and 8.44 (8.08) MeV for Li, C, Al, and Cu, respectively. Here the number
of nucleons at each shell has been assumed to be in Table F.1.2, the shell energy has been assumed
to be (2n + l)h̄ω. The harmonic oscillator parameter b =

p
h̄/mω =1.84, 1.93, 2.04, and 2.15 are

adopted for the four nuclear targets. The efficiencies of the missing energy cut is estimated by
these additional separation energies, and are 0.955±0.019, 0.963±0.014, 0.977±0.009, 0.982±0.008,
0.966±0.016, 0.975±0.013, 0.960±0.019, and 0.969±0.017 for Li(V), Li(H), C(V), C(H), Al(V), Al(H),
Cu(V), and Cu(H), respectively.

The incoherent process with using no separation energy makes the missing energy smaller. How-
ever, an enhancement in the small missing energy region is also observed for the nucleus 12C whose
separation energy is the largest. The small missing energy events is not incoherent production with
using no separation energy but coherent production.

F.3 Nucleon density distributions

Effective nucleon number Aeff shown in Subsection 1.2 has been calculated assuming nucleon density
has

ρ = ρ0{1 + e(r−c)/a}−1, (F.13)

where c = 1.14A1/3 fm, and a = 0.545 fm according to the Ref. [48]. In order to obtain more
realistic nucleon densities, charge density distributions in Ref. [81] have been used. The charge
density distributions are described in the harmonic oscillator model for Li, and in the Fourier-Bessel
expansion for the others.

In an harmonic oscillator model, charge density distribution is described as

ρ(r) = ρ0

(
1 + α

µ
r

a

¶2)
exp

(
v −

µ
r

a

¶2)
, (F.14)

where the radius r is given in fm. Table F.3 shows the parameters used for Li.

Table F.4: Charge density parameters for Li. The charge density distribution of Li is in the harmonic
oscillator model.

target Li

a 1.77
α 0.327

In a Fourier-Bessel expansion, charge density distribution is described as

ρ(r) =


X
i

aiJ0

µ
iπr

R

¶
for r ≤ R,

0 for r > R,

(F.15)

where J0 stands for the spherical Bessel function, and the radius r is also given in fm. Table F.3
shows the parameters used for the other targets.
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Table F.5: Charge density parameters for C, Al, and Cu. The charge density distributions of C, Al,
and Cu are described in the Fourier-Bessel expansion.

target C Al Cu

a1 +0.15721E−1 +0.43418E−1 +0.45598E−1
a2 +0.38732E−1 +0.60298E−1 +0.60706E−1
a3 +0.36808E−1 +0.28950E−2 −0.78616E−2
a4 +0.14671E−1 −0.23522E−1 −0.31638E−1
a5 −0.43277E−2 −0.79791E−2 −0.14447E−2
a6 −0.97752E−2 +0.23010E−2 +0.10953E−1
a7 −0.68908E−2 +0.10794E−2 +0.42578E−2
a8 −0.27631E−2 +0.12574E−3 −0.24224E−3
a9 −0.63568E−3 −0.13021E−3 −0.30067E−3
a10 +0.71809E−4 +0.56563E−4 +0.23903E−3
a11 +0.18441E−3 −0.18011E−4 −0.12910E−3
a12 +0.75066E−4 +0.42869E−5 +0.60195E−4
a13 +0.51069E−4 – −0.25755E−4
a14 +0.14308E−4 – +0.10332E−4
a15 +0.23170E−5 – −0.39330E−5
a16 +0.68465E−6 – +0.14254E−5
a17 – – −0.49221E−6
R 8.0 7.0 9.0

Normalization has been made so that the integral of the nucleon density should be the mass
number A:

4π

Z
ρ(r)r2dr = A, (F.16)

where the proton and neutron density have the same r-dependence since the targets used are N∼Z.
Figure F.3 shows the nucleon density distribution for each nuclear target in coordinate space.

Figure F.3: Nucleon density distributions in coordinate space. The Li has a Gaussian like shape, and
the others have Woods-Saxon shapes.



Appendix G

Miscellaneous

G.1 Confirmation of good buffers

In the experiment, some serious troubles of the data taking system have happened. A majority logic
unit which summed the TOF wall signals were out of order, and the data before replacing the modules
cannot be used. One of the LeCroy TDC1877S modules for DC1U and DC1V sometimes became to
return the irregular data suddenly. In case it became to return irregular data, the correlation of the
positions between SVTX and DC1 changed. Figure G.1 shows the correlation of the x and y

Figure G.1: Correlation of the x/y position between SVTX and DC1. The loci corresponding to the
charged particles produced at the target are observed clearly both in the x and y correlation plots,
and a locus corresponding to the particles produced far upstream of the target is also observed in the
x correlation plot.

positions at SVTX and DC1. A strong correlation can be seen for events of good buffers although
different z-positions of the target makes different slopes of the correlation. The x or y correlation
does not hold for the events of bad buffers in which the TDC module returned the irregular data.

In order to reject the bad buffers, the ratio of the good events to the number of analyzed events
(consistency ratio) was monitored. The condition expressed by the equation (G.1) was required for

156



G.1. CONFIRMATION OF GOOD BUFFERS 157

Table G.1: Run number used for the analysis and analyzed buffers. The blank cell in the “Buffers”
column shows all the buffers in the run are used.

Run Target Polarity Buffers Run Target Polarity Buffers Run Target Polarity Buffers Run Target Polarity Buffers
22726 C Horz. 22265 22782 Cu Vert. 22840 Al Vert. 22896 Al Horz.
22727 C Vert. 59348 22783 Cu Horz. 22841 Al Vert. 22897 Cu Horz.
22728 Li Horz. 68629 22784 Cu Horz. 22842 Al Horz. 22898 Cu Horz.
27729 Li Vert. 103646 22785 Al Horz. 22843 Al Horz. 22899 C Horz.
22730 Cu Horz. 22786 Al Horz. 22844 Cu Horz. 22900 C Horz.
22731 Cu Horz. 22787 Al Horz. 22845 Cu Horz. 22901 Cu Horz.
22732 Cu Vert. 22634 22788 Al Vert. 22846 Cu Vert. 22902 Cu Horz.
22733 Al Horz. 3494 22789 Al Vert. 22847 Cu Vert. 22903 Cu Vert.
22734 Al Horz. 22790 Al Vert. 22848 C Vert. 22904 Cu Vert.
22735 Al Vert. 2882 22791 Al Vert. 22849 C Horz. 22905 C Vert.
22736 Cu Vert. 22792 Cu Horz. 22850 Li Horz. 22906 C Vert.
22737 Cu Horz. 22793 Cu Horz. 22851 Li Vert. 22907 Cu Vert.
22738 C Horz. 22794 Cu Vert. 22852 Cu Horz. 22908 Cu Vert.
22739 C Vert. 22795 Cu Vert. 22853 Cu Horz. 22909 Al Vert.
22740 Li Vert. 22796 Cu Vert. 22854 Cu Vert. 22910 Al Vert.
22741 Cu Vert. 22797 C Horz. 22855 Cu Vert. 22912 Al Vert.
22742 Cu Vert. 22798 C Horz. 22856 Al Horz. 22913 Al Vert.
22743 Cu Horz. 22799 C Vert. 33772 22857 Al Horz. 22914 Cu Vert.
22744 Cu Horz. 22800 C Vert. 22858 Al Vert. 22915 Cu Vert.
22745 Cu Horz. 22801 Li Horz. 22859 Al Vert. 22916 Li Vert.
22746 Li Horz. 22802 Li Horz. 8176 22860 Cu Horz. 22917 Li Horz.
22747 Al Horz. 22803 Li Vert. 53019 22861 Cu Horz. 22918 Cu Horz.
22748 Al Horz. 22804 Li Vert. 1055 22862 Cu Vert. 22919 Cu Horz.
22749 Al Vert. 22805 Cu Horz. 15950 22863 Cu Vert. 22920 Al Horz.
22750 Al Vert. 22806 Cu Horz. 22864 C Horz. 22921 Al Horz.
22751 Cu Horz. 14078 22807 Cu Horz. 22865 C Vert. 22922 Al Horz.
22752 Cu Horz. 22808 Cu Vert. 22866 Li Horz. 22923 Cu Horz.
22753 Cu Vert. 22809 Cu Vert. 22867 Li Vert. 22924 Cu Horz.
22754 Cu Vert. 22810 Cu Vert. 22868 Cu Vert. 22925 Cu Horz.
22755 C Horz. 22811 Al Vert. 22869 Cu Vert. 22926 C Horz.
22756 C Vert. 85946 22812 Al Vert. 22870 Cu Horz. 22927 C Horz.
22757 Li Vert. 22813 Al Horz. 22871 Cu Horz. 22928 C Horz.
22758 Li Horz. 22814 Al Horz. 22872 Al Horz. 22929 C Horz.
22759 Cu Horz. 8635 22815 Cu Horz. 22873 Al Horz. 22930 Cu Horz.
22760 Cu Vert. 22816 Cu Horz. 22874 Al Vert. 22931 Cu Horz.
22761 Cu Vert. 22817 Cu Vert. 22875 Al Vert. 22932 Cu Horz.
22762 Cu Vert. 22818 Cu Vert. 22876 Al Vert. 22933 Cu Horz.
22763 Cu Horz. 22819 C Horz. 22877 Cu Horz. 22935 Cu Horz.
22764 Al Horz. 22820 C Vert. 22878 Cu Horz. 22936 Cu Vert.
22766 Al Vert. 22821 Li Vert. 22879 Cu Vert. 22937 Cu Vert.
22767 Al Vert. 22822 Li Horz. 22880 Cu Vert. 22939 Cu Vert.
22768 Al Horz. 22823 Cu Horz. 22881 C Vert. 22940 C Vert.
22769 Cu Horz. 22824 Cu Vert. 22882 Cu Vert. 22942 Cu Vert.
22770 Cu Vert. 3405 22825 C Vert. 22883 Cu Vert. 22943 Al Vert.
22771 Cu Vert. 22826 C Vert. 22884 Cu Vert. 22944 Li Vert.
22772 Cu Horz. 51048 22827 C Vert. 22885 Cu Vert. 22945 Li Horz.
22773 Cu Vert. 22830 C Horz. 22886 Al Vert. 22946 Cu Horz.
22774 C Vert. 22831 C Horz. 22887 Al Vert. 22950 Cu Horz.
22775 C Horz. 22832 C Vert. 22888 Cu Vert. 22952 Cu Horz. 13878
22776 Li Horz. 22833 Li Horz. 22889 Cu Vert. 22954 Cu Horz.
22777 Li Horz. 22834 Li Vert. 22890 Li Vert. 22957 Cu Horz. 1411
22778 Li Vert. 22835 Cu Horz. 22891 Li Horz. 22958 Cu Horz. 1603
22779 Li Vert. 22836 Cu Horz. 22893 Cu Horz. 22959 Cu Horz. 11765
22780 Cu Vert. 22838 Cu Vert. 22894 Al Horz. 22960 Cu Horz.
22781 Cu Vert. 48408 22839 Cu Vert. 22895 Al Horz. 22961 Al Horz.

the good events.

|xDC1 − 2.2× xSVTX| < 40 for x
|yDC1 − 2.0× ySVTX| < 40 for y

(G.1)

Figure G.2 shows the consistency ratio for x and y positions The sudden drop can be observed in the
y consistency ratio, at which the TDC module started to return irregular data.
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Figure G.2: Consistency ratio for the x and y positions between SVTX and DC1. A sudden drop is
observed in the y position after 3405 buffers are analyzed.

The buffers after this kind of sudden drop has been observed are not used for the analysis, and
the NTUPLE files have been created only for the good buffers. Table G.1 shows the run numbers
used and number of the buffers used in each run for the analysis.

G.2 Voigt function

Voigt function is a Gaussian convoluted Lorentzian (Breit-Wigner function). The characteristic func-
tion of the Gaussian and the Lorentzian – Fourier transform of these – are described as

FG(t) = exp(iµGt− σ2t2/2) for Gaussian, and (G.2)

FL(t) = exp(iµLt− |t|Γ/2) for Lorentzian, (G.3)

respectively, where µG, µL and σ, Γ are the centroid and the width of the functions, respectively. The
convoluted function is described as

V (x) =
1

2π

Z ∞
−∞

FG(t)FL(t) exp(−itx)dt

=
1

2π

Z ∞
−∞

{cos(µG + µL − x)t+ i sin(µG + µL − x)t} exp
³
−σ2t2/2− |t|Γ/2

´
dt

=
1

π

Z ∞
0
cos(µG + µL − x)t exp

Ã
−σ

2t2

2
− Γ
2
t

!
dt (G.4)

Hyper-geometric function and confluent hyper-geometric one have a recursiveness for the differential
and integration described as

d

dx
2F1(α,β, γ;x) =

αβ

γ
2F1(α+ 1, β + 1, γ + 1;x), and

d

dx
1F1(α, γ; x) =

α

γ
1F1(α+ 1, γ + 1;x).

(G.5)

Using the relations (G.5), the following expansion is obtained as

Z ∞
0
xα−1 exp(−ax2) cos cx dx = 1

2aα/2
Γ

µ
α

2

¶
1F1

Ã
α

2
,
γ

2
;− c

2

4a

!
. (G.6)
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Thus Voigt function is expanded as

V (x) =

Z ∞
0
exp(−at2 − bt) cos ct dt

=

Z ∞
0
exp(−at2)

(X (−bt)k
k!

)
cos ct dt

=
X (−b)k

k!

Z ∞
0
tk exp(−at2) cos ct dt

=
X (−b)k

k!

1

2a(k+1)/2
Γ

µ
k + 1

2

¶
1F1

Ã
k + 1

2
,
1

2
;− c

2

4a

!
, (G.7)

where a = σ2/2, b = Γ/2, and c = µG + µL − x. In order to avoid the column omission in the
numerical calculation, the Kummer’s transformation

1F1(α, γ;−x) = e−x1F1(γ − α, γ; x) (G.8)

was applied, and Voigt function becomes

V (x) =
X (−b)k

k!

1

2a(k+1)/2
Γ

µ
k + 1

2

¶
exp

Ã
− c

2

4a

!
1F1

Ã
−k
2
,
1

2
;
c2

4a

!
. (G.9)

G.3 Finite element method in TOSCA

A simple one space dimension problem is discussed below because the concepts of the method are
independent of the number of space dimensions. Consider a Poisson type equation with a potential
function φ:

∇ · ²∇φ = ρ. (G.10)

To solve this equation using a finite element method, the domain is divided into line elements, and
the potential φ within each line is approximated by a linear polynomial. Because the potential is
required to be continuous over the domain, the potential within the line is described by the values of
φ at the nodes of the line, and the same values are used in other lines that meet at the node. Then,
the potential φ within the line element is described as

φ(x) = N1(x)φ1 +N2(x)φ2, (G.11)

where N1 and N2 are the shape functions, and are expressed by a local coordinate system ξ as

N1(x) =
1

2
(1− ξ),

N2(x) =
1

2
(1 + ξ), and

−1 ≤ ξ ≤ +1.

(G.12)

Note that the location of ξ = −1, and +1 expresses the nodes of the line 1, and 2, respectively. The
shape function Ni for a particular node is only defined in the elements that used the node and is zero
outside these elements.

Weighted residuals are used in TOSCA for the method of approximating the potential φ using
nodal values φi and associated shape functions Ni(x). An approximate solution φ is determined by
requesting to satisfyZ

W (∇ · ²∇φ− ρ) dx = 0, (G.13)
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whereW is a weighting function. Integrating Eq. (G.13) by parts to reduce the order of differentiation
is applied to φ givesZ b

a
(∇W · ²∇φ+Wρ) dx−

·
W²

∂φ

∂x

¸b
a
= 0, (G.14)

where a and b are the limits of the domain of the equation. In the Eq. (G.14), derivative continuity
is not necessary for the W and φ functions, and the natural boundary condition on the surface of the
domain emerges. In the Galerkin weighted residual method that TOSCA adopts, the shape functions
of the nodes are used for each weight function, then the equation for weight function Wi = Ni is
obtained by

X
j

Z b

a
(∇Ni · ²∇Njφj +Niρ) dx−

·
Ni²

∂φ

∂x

¸b
a
= 0 (G.15)

for all the elements that contains node i. Taking all the equations for the different weight functions
together gives a set of linear equations, which can be written in the matrix form as

KΦ = S, (G.16)

where Φ is a vector of unknown nodal potential values φi, K is a coefficient matrix, of which individual
elements are

Kij =

Z b

a
∇Ni · ²∇Njdx, (G.17)

and S is a known vector derived from the given line charge densities or assigned boundary conditions.
A Newton-Raphson method is used to solve this type of non-linear equation. Given an initial

solution Φn, a new solution Φn+1 is found by solving the linearized jacobian system as

Φn+1 = Φn − αJnRn, (G.18)

where α is a relaxation factor, Rn is a residual matrix described as

Rn = KnΦn − Sn, (G.19)

and J is a jacobian described as

Jn =
∂

∂Φn
(KnΦn − Sn) . (G.20)

The α is chosen to aid convergence, which starts with 1, and in each iteration which is multiplied by
2 if the change in |R| is too small or divided by 2 if the norm of the residual |Rn+1| would be greater
than |Rn|.
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