Super NEMO : R&D Status

BiPo detector

Jérémy Argyriades, LAL Orsay

Centre National de la Recherche Scientifique

Laboratoire de l'Accélérateur Linéaire
Outline

1. What is the BiPo? Why Super NEMO needs it?
2. Detection technique
3. R&D program description
4. Prototype BiPo I: scintillator cubes
5. Prototype BiPo II: scintillator plates
Why SuperNEMO needs a radiopurity ultra-sensitive detector?

- **Goal of BiPo**: precise measurement of the $^{202\text{Tl}}$ (via $^{214\text{Bi}}$) on source foils before their installation in Super NEMO
- **Required sensitivity**: 2 µBq/kg in 1 month $\Rightarrow 0.2$ µBq/m²
- **Technique**: plastic scintillator to search for Bi \rightarrow Po decay
BiPo decay process

212Bi from Thorium decays 1/3 into 208Tl, 2/3 into 212Po

BiPo detector measures the e^- from 212Bi \rightarrow 212Po, and after \sim300ns, the α from 212Po \rightarrow 208Pb
Detection technique

\[E_{\text{threshold}}(\text{e}^-) = 100 \text{ keV} \]
\[+ \ E_{\text{threshold}}(\alpha) = 1 \text{ MeV} \]
\[+ \text{ back-scattering rejection} > 40 \text{ keV} \]

\[\Rightarrow \text{ Detection efficiency of 7.5\% (G4 MC)} \]

Background sources :

- Random coincidence
- Surface contamination (until a depth of 100\text{\mu}m)
Additional cut for surface contamination

Important background: surface contamination

- Prompt e^-, T_0
- Delay α, $T_{1/2} \sim 300$ ns

- e^- from 212Bi: ~ 50 keV in 100 μm of scintillator

Cut: no e^- with energy > 50 keV in the scintillator of the α

- Efficiency \downarrow to 6%
- BUT background $\div 15$

Merit factor: $\frac{Signal}{\sqrt{Background}} \uparrow$ by 300 % !
R&D program

• 2 different prototypes studied:
 - 25 blocks of scintillator/m², 1 PMT/block
 - 1 plate of scintillator/m², ~30 PMTs/plate

• Additional R&D: ultra-fine scintillating fiber for e^-/α separation

• Common electronic: acquisition by card MATACQ
 (12 bits, 0-1V, 2.5µs, 2GHz/s)

• Low background test in LSC, Canfranc, Spain (2500 m.w.e.)
Canfranc Shielding

Shield Test:
- external: 2.3 m x 2.3 m x 2 m
- internal: 1.45 m x 1.45 m x 1.05 m
- 25 capsules BiPo I can be installed in Phase I
- Multilayer BiPo II fit inside the shielding
Description of the BiPo I prototype

- Scintillator blocs: 20 x 20 x 1 cm
- NEMO-3 equipments (radiopure 5” PMTs, radiopure scintillator, etc…)
- First capsule installed in Canfranc end of the year 2006 with ultra-pure Al
- For the moment, DAQ with Lecroy oscilloscope
- PMMA optical guide
Measurement of the quenching factor

$^{241}\text{Am } \alpha$ source, peak at 5.6 MeV

Light in a scintillator detected by a PMT

Successive mylar foils to decrease the α energy

Scintillator

$^{241}\text{Am source } \quad Q_\alpha = 5.6 \text{ MeV}$
Measurement of the quenching factor

@ 1 MeV
QF = ~25

40 keV threshold for e⁻ = ~1 MeV
threshold for α
Calculation principle of the BiPo sensitivity

If we see during T_{obs} N events, we can calculate the sensitivity as follows:

Surface of 1 Capsule: $S = 400 \text{ cm}^2$

Efficiency: $\varepsilon = 36\%$ because:
- 50\%: e^- and α are back-to-back
- $\times 90\%$: delay time up to 1 μs (= 3.3 $T_{1/2}(^{212}\text{Po})$)
- $\times 80\%$: event is rejected if back-scattered e^-

\Rightarrow Sensitivity: $A(^{212}\text{Bi} \rightarrow ^{212}\text{Po}) < N_{\text{excluded}} / (\varepsilon \times S \times T_{\text{obs}})$
1st sensibility result of BiPo I capsules

• 1 capsule alone : 10.1 days of measurement
 – 0 BiPo “in time” events (<1µs)
 – 1 BiPo “random” event (>1µs) compatible with 0.32 expected coincidences
 \[\text{limit } A(^{212}\text{Bi} \rightarrow ^{212}\text{Po}) < 65 \text{ µBq/m}^2 \]
 \[(A(^{208}\text{Tl}) < 32.5 \text{ µBq/m}^2) \]

• 2 capsules : 11.3 days
 – 0 BiPo “in time” events
 – 0 BiPo “random” events for 1 expected coincidence
 \[\text{limit } A(^{212}\text{Bi} \rightarrow ^{212}\text{Po}) < 29 \text{ µBq/m}^2 \]
 \[(A(^{208}\text{Tl}) < 14.5 \text{ µBq/m}^2) \]
Description of BiPo II prototype

- Scintillating plate $75 \times 75 \text{ cm}^2$ or wider
- ~20 PMTs’ lecture on 2 sides
- Optical guides to transfer the light from scintillator to PMTs

R&D Issues:
- How many PMTs? 2” or 3”?
- Optimized shape of the optical guides?
- Energy threshold for an α in the middle?
Experimental set-up in Orsay

A well-designed mechanical support has been conceived:
- Plots for the 20x20 cm² scintillator plate
- Fixation for the PMTs
Position reconstruction

- 4 PMTs reading a 20×20 cm² plate
- $^{241}\text{Am} \alpha$ source placed every 5cm on the plate
- We need to reconstruct the source position with charge information
Neural Network Software

- Learning sample of ~100 events for each position
- MLP neural network \(\Rightarrow \) MultiLayer Perceptron = the network weighting process starts from expected outputs (X and Y position) and regress until the inputs (4 PMTs’ charges)
- Testing sample (different from learning one) is reconstructed. Estimation of the position resolution by \(\Delta X = X_{\text{reconstructed}} - X_{\text{true}} \) and \(\Delta Y \)
Neural Network Software

• Testing sample (different from learning one) is reconstructed. Estimation of the position resolution by $\Delta X = X_{\text{reconstructed}} - X_{\text{true}}$ and ΔY

Position resolution better than 2 cm
Technical solutions

• December 2006: source support for its “magnetic” displacement 5mm precision
• January 2007: larger black box ⇒ 50cm x 50 cm plate available
Super NEMO - MOON collaboration

- I’m working since February 10th in Osaka University with Nomachi san group.
- Installation of a 53×53 cm² plastic source and 32 K free square PMTs (4 sides).
- Trigger and DAQ electronic, HV cabling, mechanical support and light shielding.
- 1mm precision positioning.
- Special thanks for Kanamaru and Sakihuchi for their efficiency.
- Preliminary result: LED in the middle of the plate. Software correction of the gain.

10% gain non uniformity

⁻ 2% with LED calibration
Planning

- 20 BiPo I capsules tested in Canfranc in 2007
- Summer 2007: 50×50 cm² and 75×75 cm² scintillator plates tested
- End of year 2007: 1st 2-layers BiPo2 prototype installed in Canfranc for low radioactivity measurement
Conclusion

• Intense R&D program for the BiPo detector.
• 1st important questions will be answered this year (BiPo I or II? PMTs size? Expected sensitivity of 0.2 µBq/m² is reachable?)
• Collaboration with MOON people will continue and increase
Thanks, merci, gracias,
Ευχαριστώ, ありがとう,
Спасибо, grazie,
متشكرم, благодаря,
děkuji
Backup
Candidate

- Channel 1: Delay time: 1.4 μs
- Channel 2

E = 275 keV
ZOOM

E = 690 keV
ZOOM