E378

PROPOSAL FOR EXPERIMENT AT RCNP

July 10, 2011

TITLE:

High-resolution study of Gamow-Teller transitions in deformed and spherical heavy nuclei

SPOKESPERSONs:

Full Name	Yoshitaka Fujita
Institution	Department of Physics, Osaka University
Position	Associate Professor
Address	Machikaneyama, Toyonaka, Osaka, 560-0043
Phone number	+81-6-6850-5506
E-mail	fujita@rcnp.osaka-u.ac.jp

Full Name	Ela Ganioglu
Institution	Science Faculty, Istanbul University
Position	Assistant Professor
Address	TK-34134 Istanbul, Turkey
E-mail	elaganioglu@gmail.com

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
H. Fujita	Dept. Phys., Osaka University	Researcher
Y. Shimbara	Dept. Phys., Niigata University	Assistant Professor
M. Nagashima	Dept. Phys., Niigata University	D1
T. Itoh	Dept. Phys., Niigata University	M2
T. Adachi	ELPH, Tohoku University	Assistant Professor
A. Tamii	RCNP, Osaka University	Associate Professor
K. Hatanaka	RCNP, Osaka University	Professor
T. Shima	RCNP, Osaka University	Assistant Professor
T. Suzuki	RCNP, Osaka University	Assistant Professor
K. Miki	RCNP, Osaka University	Researcher
Y. Oktem	Science Faculty, Istanbul University	Associate Professor
G. Susoy	Science Faculty, Istanbul University	Assistant
L. Kucuk	Science Faculty, Istanbul University	Assistant
B. Bilgier	Science Faculty, Istanbul University	M2
H.C. Kozer	Science Faculty, Istanbul University	M2
S.E.A. Orrigo	IFIC, CSIC and University of Valencia	Researcher
B. Rubio	IFIC, CSIC and University of Valencia	Senior Researcher

RUNNING TIME:

94 Zr, 114 Sn, 124 Sn, 165 Ho target nuclei	$4.0 \mathrm{~days}$
Measurements for calibration and reference targets	$0.5 \mathrm{~days}$
Beam preparation, dispersion matching, sieve slit runs	$1.5 \mathrm{~days}$

BEAM LINE:

Ring : WS course, high resolution mode

BEAM REQUIREMENTS:

Type of particle	³ He
Beam energy	$420 { m MeV}$
Beam intensity (max.)	25 nA
Energy resolution	$\Delta E \leq 100$ keV, small emittance

BUDGET:

Enriched targets ⁹⁴Zr, ¹⁶⁵Ho:

600k yen

SCHEDULE:

We request the beam time in December, 2011 or end of April, 2012.

1 Summary of Experiment

• Summary of proposal and experiment:

Our aim is to study β^- -type Gamow-Teller (GT⁻) transitions starting from ⁹⁴Zr, ¹¹⁴Sn, ¹²⁴Sn, ¹⁶⁵Ho target nuclei in the high energy-resolution (³He, t) experiments. Nuclei ⁹⁴Zr, ¹¹⁴Sn, and ¹²⁴Sn are the typical spherical nuclei. In earlier charge-exchange reactions, such as (p, n) or (³He, t), they mainly paid attention to the IAS, which is sharp, and the resonance structure around the excitation energy of 10 MeV, which is called the Gamow-Teller Resonance (GTR).

However, with the increase of the resolution in the $({}^{3}\text{He}, t)$ measurement using the dispersion matching techniques, highly fragmented structures were observed in the lowlying region below the proton separation energy S_{p} . Above this energy, the decay widths start to smear the spectrum. It was found that the fragmented structures are very specific for different nuclei, representing individuality of each nucleus. We have already found some part of such unique features in the measurement of GT strength starting from the Z = 40 zirconium isotopes (${}^{90}\text{Zr}$ and ${}^{92}\text{Zr}$) and also Z = 50 tin isotopes (${}^{118}\text{Sn}$ and ${}^{120}\text{Sn}$). We extend the measurements on ${}^{94}\text{Zr}$, ${}^{114}\text{Sn}$, and ${}^{124}\text{Sn}$ target nuclei.

Deformed nuclei in the rare earth region, such as ¹⁶⁵Ho and ¹⁶⁵Er have well developed structure of rotational-bands. In the deformed nuclei, the z component K of the total angular momentum J becomes the good quantum number and the selection rules $\Delta K = 0$, and ± 1 should be considered for the GT transitions caused by the $\sigma\tau$ operator. If the nucleus is largely deformed, the selection rules related to the asymptotic quantum numbers of the Nilsson orbit $[N n_z \Lambda]$ also become important in addition to the K^{π} selection rules. It should be noted that these three asymptotic quantum numbers are related to the "spacial shape" of nuclei and the $\sigma\tau$ operator for the GT transition cannot mediate the transitions between the states with different set of asymptotic quantum numbers, if they are the "good quantum numbers". Here we propose to measure the strengths of GT transitions starting from the ground state (g.s) of ¹⁶⁵Ho with 7/2⁻[523] to the members of rotational bands in ¹⁶⁵Er to examine the validity of selection rules related to K^{π} and asymptotic quantum numbers.

• Properties of $({}^{3}\text{He}, t)$ measurements:

It is known that (³He, t) experiments at forward angles including 0° and a beam energy of 140 MeV/nucleon are a unique tool to study GT^- transition strength. Because of the simplicity of reaction mechanism, and also the dominance of the $\sigma\tau$ interaction at 0°, the B(GT) values that are proportional to the square of the transition matrix element can be derived accurately [1].

In such (³He, t) measurements, a high energy resolution of less than 30 keV is important in order to separate GT (and Fermi) states and also to determine the widths of states. Also important is the good angular resolution and the capability of reconstructing the scattering angle. The ion-optical conditions *dispersion matching* and *angular dispersion matching* are to be realized between the spectrometer and the WS beam line to achieve a high energy-resolution and good angle-resolution, respectively. The over-focus mode of the spectrometer is essential in realizing good angle resolution in vertical direction and also in correcting kinematic aberrations.

• Apparatus and beam properties:

The spectrometer Grand Raiden and the standard VDC focal plane detector system

will be used for the analysis and detection of outgoing tritons. We request ≈ 20 nA of good quality single-turn extracted 420 MeV ³He beam. In order to realize various matching conditions, including the dispersion matching condition, full capabilities of the WS course will be utilized.

• Beam time request:

Measurement for ⁹⁴Zr, ¹¹⁴Sn, ¹²⁴Sn, ¹⁶⁵Ho targets : 4.0 days Measurements for calibration and reference targets (for example, mylar, ^{nat}Mg, ⁹⁰Zr, ¹¹⁸Sn) : 0.5 days Beam preparation, dispersion matching, sieve slit runs : 1.5 days

• Schedule:

We request the beam time in December, 2011 or in the end of April, 2012.