E381

PROPOSAL FOR EXPERIMENT AT RCNP

11 July 2011

TITLE:

Search of potential resonances in the ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion reaction using chargedparticle decays from the ${ }^{24} \mathrm{Mg}\left(\alpha, \alpha^{\prime}\right)^{24} \mathrm{Mg}^{*}$ reaction SPOKESPERSON:

Full Name	Xiaodong Tang
Institution	Department of Physics, University of Notre Dame
Title or Position	Assistant Professor
Address	Notre Dame, IN 46556, USA
Phone number	$+1-574-631-1889$
FAX number	$+1-574-631-5952$
E-mail	x.tang@nd.edu
Full Name	G.P.A. Berg
Institution	Department of Physics, University of Notre Dame
Title or Position	Research Professor
Address	Notre Dame, IN 46556, USA
Phone number	+1-574-631-6238
FAX number	+1-574-631-5952
E-mail	gpberg@bergs.com
Full Name	Kawabata, Takahiro
Institution	Department of Physics, Kyoto University
Title or Position	Associate Professor
Address	Kyoto 606-8502, Japan
Phone number	$+(81)-75-7533832$
E-mail	kawabata@scphys.kyoto-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
B. Bucher	Department of Physics, University of Notre Dame,	Research Assistant
F. Xiao	Department of Physics, University of Notre Dame,	Research Assistant
D. Patel	Department of Physics, University of Notre Dame,	Research Assistant
R. Talwar	Department of Physics, University of Notre Dame,	Research Assistant
A. Long	Department of Physics, University of Notre Dame,	Research Assistant
N. Yokota	Department of Physics, Kyoto University,	M1
U. Garg	Department of Physics, University of Notre Dame,	Professor
M. Wiescher	Department of Physics, University of Notre Dame,	Professor
Y.-W. Lui	Cyclotron Institute, Texas A\&M University,	Research Professor
K. Hatanaka	RCNP, Osaka University,	Professor
A. Tamii	RCNP, Osaka University	Associate Professor
Y. Fujita	Dept. of Physics, Osaka University	Associate Professor
E. Ganioğlu	Department of Physics, Istanbul University	Assistant Professor
G. Susoy	Department of Physics, Istanbul University	Research Assistant
B. Bilgier	Department of Physics, Istanbul University	M2
H.C. Kozer	Department of Physics, Istanbul University	M2
M. Freer	Department of Physics, University of Birmingham	Professor

RUNNING TIME: Installation time and access to Grand Raiden before beam time 5 days
Setup with beam(detector tests, disp. matching) 3 days
Energy and angle calibration runs 1 day
Check the contribution from carbon and oxygen contaminants 1 day
Data runs
4 days
BEAM LINE: Fully dispersion matched WS beam line and Grand Raiden
Spectrometer in the mode of Faraday cups behind Q1.

TITLE:

Search of the potential resonances in the ${ }^{12} \mathbf{C}+{ }^{12} \mathbf{C}$ fusion reaction using charged-particle decays from the ${ }^{24} \mathrm{Mg}\left(\alpha, \alpha^{\prime}\right)^{24} \mathrm{Mg}^{*}$ reaction

SPOKESPERSON: X. Tang, G.P.A. Berg, T. Kawabata

SUMMARY OF THE PROPOSAL

The ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion reaction is an important reaction for various stellar evolution scenarios, such as massive stars, type Ia supernovae and superbursts. There are hints from both nuclear and astrophysical studies suggesting the existence of $0^{+} / 2^{+}$resonances around $\mathrm{E}_{\text {c.m. }}=1.5 \mathrm{MeV}$ (Excitation energy $\mathrm{E}_{x}=15.4 \mathrm{MeV}$ in ${ }^{24} \mathrm{Mg}$) that may enhance the carbon burning reaction rate. We propose to search for these resonances using the ${ }^{24} \mathrm{Mg}\left(\alpha, \alpha^{\prime}+\mathrm{X}\right)$ reaction. To establish a reliable correlation between the ${ }^{24} \mathrm{Mg}$ states and the measured ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ resonances, the energies of the populated 0^{+}and 2^{+}states will be determined with an accuracy about 20 keV . The charged particles decaying from ${ }^{24} \mathrm{Mg}^{*}$, namely $\alpha,{ }^{8} \mathrm{Be}$ and p, will be measured in coincidence with the inelastically scattered α particle to provide further constraints on those correlated states. Finally, using the correlation observed at higher energies, we will search for possible resonant states within the excitation energy range of 14 to 16 MeV , which is not accessible at present in fusion measurements.

