E412

PROPOSAL FOR EXPERIMENT AT RCNP

13 February 2012

TITLE:

Development of a new neutron detector with a high position resolution with proton and neutron beams around 100, 150, and 200 $\rm MeV$

SPOKESPERSON:

Full Name	Yuki Kubota			
Institution	Center for Nuclear Study, University of Tokyo			
Title or Position	M2			
Address	2-1 Hirosawa, Wako, Saitama			
Phone number	+81-48-464-4285			
FAX number	+81 - 48 - 464 - 4554			
E-mail	kubota@cns.s.u-tokyo.ac.jp			
CO-SPOKESPERSON:				
Full Name	Masaki Sasano			
Institution	RIKEN Nishina Center			
Title or Position	R			
Address	2-1 Hirosawa, Wako, Saitama			
Phone number	+81-48-462-4967			
E-mail	sasano@ribf.riken.jp			

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
Yuki Kubota	Center for Nuclear Study, University of Tokyo	(M2)
Masaki Sasano	RIKEN Nishina Center	(\mathbf{R})
Tomohiro Uesaka	RIKEN Nishina Center	(CS)
Hiroaki Matsubara	RIKEN Nishina Center	(PD)
Masanori Dozono	RIKEN Nishina Center	(PD)
Shinsuke Ota	Center for Nuclear Study, University of Tokyo	(A)
Hiroshi Tokieda	Center for Nuclear Study, University of Tokyo	(D3)
Shoichiro Kawase	Center for Nuclear Study, University of Tokyo	(D2)
Tang Tsz Leung	Center for Nuclear Study, University of Tokyo	(D2)
CheongSoo Lee	Center for Nuclear Study, University of Tokyo	(M2)
Motoki Kobayashi	Center for Nuclear Study, University of Tokyo	(M1)
Masatoshi Itoh	Cyclotron and Radioisotope Center, Tohoku University	(A)
Kimiko Sekiguchi	Department of Physics, Tohoku University	(AP)
Takahiro Taguchi	Department of Physics, Tohoku University	(M1)
Atsushi Tamii	RCNP, Osaka University	(AP)
Tatsushi Shima	RCNP, Osaka University	(AP)
Kenjiro Miki	RCNP, Osaka University	(PD)
Tomotsugu Wakasa	Department of Physics, Kyushu University	(AP)
Jumpei Yasuda	Department of Physics, Kyushu University	(M1)
Taku Fukunaga	Department of Physics, Kyushu University	(M1)
Yasutaka Nishio	Department of Physics, Kyushu University	(B4)

RUNNING TIME:	Installation time without beam	7 days(for each beam time)
	Setup of the detectors and DAQ	$0.8 \mathrm{~days}$

Proton measurement			$0.3 \mathrm{~days}$	
Neutron measurement			$3.9 \mathrm{~days}$	
BEAM LINE:				Ring : N0 course
BEAM REQUIREMENTS:		Type of particle		protons
		Beam energy		$100,150,\mathrm{and}~200~\mathrm{MeV}$
		Beam intensity	$\geq 100 \text{ nA}$	after the pulsing of $1/5$
		Any other requir	rements	time width $\leq 250 \text{ ps}$
			h	alo-free, small emittance
BUDGET:	Experimental expenses			100,000 yen
	Travel pla	n		600,000 yen
	Total			$700,000 { m yen}$

TITLE:

Development of a new neutron detector with a high position resolution with proton and neutron beams around 100, 150, and 200 MeV

SPOKESPERSON: Yuki Kubota

SUMMARY OF THE PROPOSAL

We propose to characterize the performances of a new neutron detection system with a position resolution better than 3 mm developed at the RIKEN RIBF using proton and neutron beams with energies from 100 to 200 MeV in conjunction with the neutron time-of-flight facility. The prototype detector of this system is designed for measuring neutron single-particle-state spectra on unstable nuclei with a separation energy resolution of 1 MeV. The neutron-detection part is highly segmented and consists of 64 plastic scintillating fibers each with sizes of $3.75 \times 3.75 \times 1000 \text{ mm}^3$. Multi-anode photomultiplier tubes (PMTs) at the both ends are used for reading out the scintillator light on the basis of fiber by fiber, enabling one to achieve the position resolution of 2.6 mm. A faint proton beam at 200 MeV and mono-energetic neutron beams produced through the ⁷Li(p, n)⁷Be(g.s.+0.43 MeV) and ¹²C(p, n)¹²N(g.s.) reactions at 0° from proton beams at 100, 150, and 200 MeV will be used for determining the neutron-detection efficiency, the position resolution along both the short and long sides of the detector, the time resolution, and the proportion of the effective area in the scintillation part.