E436
PROPOSAL FOR EXPERIMENT AT RCNP

16 July 2014

TITLE: Probing High-Spin States in 61Fe Using the 48Ca(16C,3n) Reaction

SPOKESPERSON:

Michael P. Carpenter
Argonne National Laboratory
Staff Scientist

Address
9700 South Cass Avenue,
Argonne, IL 60439, USA

Phone number +1-630-252-5365

FAX number +1-630-252-4978

E-mail carpenter@anl.gov

EXPERIMENTAL GROUP:

M. Albers
Argonne National Laboratory
Post-doc

D.A. Ayangeakaa
Argonne National Laboratory
Post-doc

J. Chen
Argonne National Laboratory
Post-doc

C.J. Chiara
University of Maryland/ANL
Research Scientist

H.M. David
Argonne National Laboratory
Post-doc

C.R. Hoffman
Argonne National Laboratory
Staff Scientist

R.V.F. Janssens
Argonne National Laboratory
Staff Scientist

B.P. Kay
Argonne National Laboratory
Staff Scientist

F.G. Kondev
Argonne National Laboratory
Staff Scientist

T. Lauritsen
Argonne National Laboratory
Staff Scientist

S. Zhu
Argonne National Laboratory
Staff Scientist

P. Fallon
Lawrence Berkeley National Laboratory
Staff Scientist

A.O. Macchiavelli
Lawrence Berkeley National Laboratory
Staff Scientist

W. Walters
University of Maryland
Professor

E. Ideguchi
RCNP, Osaka University
Associate Professor

N. Aoi
RCNP, Osaka University
Professor

T. Koike
Tohoku University
Associate Professor

H. J. Ong
RCNP, Osaka University
Lecturer

and CAGRA collaboration

RUNNING TIME:
Installation time without beam
5 days

Beam Tuning
1 days

Data runs
7 days

BEAM LINE:
EN

BEAM REQUIREMENTS:
Type of particle:
18O

Reaction to be used:
9Be(18O,17N)10B

Beam energy:
9.3 MeV/A

Beam intensity:
up to 2μA
We propose to identify high-spin states in 61Fe utilizing the radioactive-ion beam, 16C, which is under development at RCNP. This nucleus have been studied up to moderate spins utilizing deep-inelastic collisions in conjunction with Gammasphere [1]. Interest in Cr-Ni nuclei around $N = 40$ has resulted from the evidence of collectivity at or near the ground state in the $N = 40$ isobars 64Cr, 66Fe and 68Ni. A recent paper by Carpenter et al., [3] has attempted to reproduce the yrast structures of 60,62,64,66,68Fe and 60,62,64Cr using a simple two-band mixing calculation where shapes of both spherical and deformed states are assumed to co-exist and interact resulting in the observed behavior of the level structure below $I=10\hbar$. This analysis relies heavily on the availability of high-spin data measured for 58,60Fe using fusion-evaporation reactions. In order to confirm the conclusion of ref. [3] that the observed collectivity at $N = 40$ results from deformation as opposed to vibration, we propose to begin a program to measure high-spin states in neutron-rich Fe nuclei using fusion evaporation reactions with radioactive beams. As a first case, we propose to populate high-spin states in 61Fe using the 48Ca(16C,3n) reaction with the goal of extending in spin the states built on top of the known $9/2^+$ isomer and identifying the unfavored signature partner band associated with the underlying $g_{9/2}$ configuration. These observation will provide the necessary information to ascertain whether or not the $9/2^+$ state is prolate or oblate deformed. Determining the deformation driving effects of the $g_{9/2}$ neutron orbital as one approaches $N = 40$ in the Fe and Cr isotopes is critical if one is to understand fully the nature of the collectivity observed near $N = 40$ and below $Z = 28$. Excited states in 61Fe will be identified by measuring the γ rays de-exciting populated levels with the CAGRA spectrometer.