E436

PROPOSAL FOR EXPERIMENT AT RCNP

16 July 2014

TITLE: Probing High-Spin States in 61 Fe Using the 48 Ca(16 C,3n) Reaction SPOKESPERSON:

Michael P. Carpenter	Argonne National Laboratory	Staff Scientist
Address	9700 South Cass Avenue,	Argonne, IL 60439, USA
Phone number	+1-630-252-5365	
FAX number	+1-630-252-4978	
E-mail	carpenter@anl.gov	

EXPERIMENTAL GROUP:

M. Albers	Argonne National Laboratory	Post-doc
D.A. Ayangeakaa	Argonne National Laboratory	Post-doc
J. Chen	Argonne National Laboratory	Post-doc
C.J. Chiara	University of Mayrland/ANL	Research Scientist
H.M. David	Argonne National Laboratory	Post-doc
C.R. Hoffman	Argonne National Laboratory	Staff Scientist
R.V.F. Janssens	Argonne National Laboratory	Staff Scientist
B.P. Kay	Argonne National Laboratory	Staff Scientist
F.G. Kondev	Argonne National Laboratory	Staff Scientist
T. Lauritsen	Argonne National Laboratory	Staff Scientist
S. Zhu	Argonne National Laboratory	Staff Scientist
P. Fallon	Lawrence Berkeley National Laboratory	Staff Scientist
A.O. Macchiavelli	Lawrence Berkeley National Laboratory	Staff Scientist
W. Walters	University of Maryland	Professor
E. Ideguchi	RCNP, Osaka University	Associate Professor
N. Aoi	RCNP, Osaka University	Professor
T. Koike	Tohoku University	Associate Professor
H. J. Ong	RCNP, Osaka University	Lecturer
and CAGRA collaboration		

RUNNING TIME:	Installatio	on time without beam	$5 \mathrm{~days}$
Beam Tuning		$1 \mathrm{~days}$	
Data runs			$7 \mathrm{~days}$
BEAM LINE:			EN
BEAM REQUIREMENTS:		Type of particle:	^{18}O
		Reaction to be used:	${}^{9}\text{Be}({}^{18}\text{O},{}^{17}\text{N}){}^{10}\text{B}$
		Beam energy:	9.3 MeV/A
		Beam intensity:	up to $2p\mu A$

TITLE: Probing High-Spin States in ⁶¹Fe Using the ⁴⁸Ca(¹⁶C,3n) Reaction

SPOKESPERSON: Michael P. Carpenter

SUMMARY OF THE PROPOSAL

We propose to identify high-spin states in ⁶¹Fe utilizing the radioactive-ion beam, ¹⁶C, which is under development at RCNP. This nucleus have been studied up to moderate spins utilizing deep-inelastic collisions in conjunction with Gammasphere [1]. Interest in Cr-Ni nuclei around N = 40 has resulted from the evidence of collectivity at or near the ground state in the N = 40 isobars ⁶⁴Cr, ⁶⁶Fe and ⁶⁸Ni. A recent paper by Carpenter et al., [3] has attempted to reproduce the yrast structures of ^{60,62,64,66,68}Fe and ^{60,62,64}Cr using a simple two-band mixing calculation where shapes of both spherical and deformed states are assumed to co-exist and interact resulting in the observed behavior of the level structure below $I=10\hbar$. This analysis relies heavily on the availability of high-spin data measured for ^{58,60}Fe using fusion-evaporation reactions. In order to confirm the conclusion of ref. [3] that the observed collectivity at N = 40results from deformation as opposed to vibration, we propose to begin a program to measure high-spin states in neutron-rich Fe nuclei using fusion evaporation reactions with radioactive beams. As a first case, we propose to populate high-spin states in 61 Fe using the ${}^{48}Ca({}^{16}C,3n)$ reaction with the goal of extending in spin the states built on top of the known $9/2^+$ isomer and identifying the unfavored signature partner band associated with the underlying $g_{9/2}$ configuration. These observation will provide the necessary information to ascertain whether or not the $9/2^+$ state is prolate or oblate deformed. Determining the deformation driving effects of the $g_{9/2}$ neutron orbital as one approaches N = 40 in the Fe and Cr isotopes is critical if one is to understand fully the nature of the collectivity observed near N = 40 and below Z = 28. Excited states in ⁶¹Fe will be identified by measuring the γ rays de-exciting populated levels with the CAGRA spectrometer.