E437

RCNP EXPERIMENT E

PROPOSAL FOR EXPERIMENT AT RCNP

12 February 2014

TITLE:

Spectroscopy of ¹⁵B: A search for unexpected bound states

SPOKESPERSON:

Calem R. Hoffman Full Name

Physics Division, Argonne National Laboratory Institution

Title or Position Staff Scientist

Address 9700 S. Cass Ave, Argonne, IL 60439 USA

Phone number +1-630-252-4053FAX number +1-630-252-4978E-mail crhoffman@phy.anl.gov

EXPERIMENTAL GROUP:

M. Albers	Argonne National Laboratory	Postdoctoral Researcher
A. D. Ayangeakaa	Argonne National Laboratory	Postdoctoral Researcher
M. P. Carpenter	Argonne National Laboratory	Staff Scientist
J. Chen	Argonne National Laboratory	Postdoctoral Researcher
C. J. Chiara	Univ. of Maryland / Argonne National Laboratory	Research Scientist
H. M. David	Argonne National Laboratory	Postdoctoral Researcher
R. V. F. Janssens	Argonne National Laboratory	Staff Scientist
B. P. Kay	Argonne National Laboratory	Staff Scientist
F. G. Kondev	Argonne National Laboratory	Staff Scientist
T. Lauritsen	Argonne National Laboratory	Staff Scientist
J. P. Schiffer	Argonne National Laboratory	Staff Scientist
S. Zhu	Argonne National Laboratory	Staff Scientist
P. Fallon	Lawrence Berkeley National Laboratory	Staff Scientist
A. O. Macchiavelli	Lawrence Berkeley National Laboratory	Staff Scientist
Eiji Ideguchi	RCNP, Osaka University	Associate Professor
Nori Aoi	RCNP, Osaka University	Professor

Associate Professor Takeshi Koike Tohoku University

RCNP, Osaka University Hooi Jin Ong Lecturer

and the CAGRA collaboration

RUNNING TIME: Installation time without beam 5 days Data run 7 days **BEAM LINE:** EN Course

Type of particle BEAM REQUIREMENTS:

> Beam energy 20-40 MeV/u (320 - 640 MeV) 5x10⁵ particles-per-second Beam intensity

BUDGET: Experimental expenses 0 yen TITLE:

Spectroscopy of $^{15}\mathrm{B}$: A search for unexpected bound states

SPOKESPERSON: Calem R. Hoffman

SUMMARY OF THE PROPOSAL

Bound states in ¹⁵B are to be populated through the one proton removal reaction on a 16 C beam and γ -rays from decaying states identified by an array of Comptonsuppressed HPGe Clover detectors (CAGRA) with goals of identifying previously unexpected bound states and assigning spins to excited states for the first time. To date only two bound states have been found in ¹⁵B, neither with firm spin or parity assignments. The present work is aimed at identifying other possible excited states residing below the neutron separation energy in ¹⁵B, in particular to determine whether an excited 3/2 state is present. Additional information on newly found states, as well as the two previously identified levels will be obtained through γ -ray angular distributions and intensity ratio measurements. An excited 3/2 state is not predicted to reside below the 15 B S_n by various modern calculations, however, a robust systematic has been observed for states of s-wave character in the p-sd region. An extension of these systematics have been applied to neutron-rich N=10 systems involving twoneutron $(sd)^2$ configurations suggesting the state may appear lower in excitation energy than expected. A similar trend in the energy differences was noticed between ground $(p)^2$ neutron states and excited $(sd)^2$ neutron states in the N=8 neutron-rich isotones. Furthermore, firm spin assignments will provide new information to compare with theoretical predictions and to generate additional systematic studies in the N=10 isotones when transitioning from ¹⁶C into ¹⁴Be.