E452

PROPOSAL FOR EXPERIMENT AT RCNP

 $25 \ {\rm February} \ 2015$

TITLE: Using high resolution (${}^{3}\text{He}, t$) reactions on ${}^{116}\text{Cd}$ and ${}^{116}\text{Sn}$ for nuclear structure and neutrino physics

SPOKESPERSON(s):

SI OKESI ERBOIN(S):				
Full Name	Kai Zuber			
Institution	Institut für Kern- und Teilchenphysik, Technische Universität Dresden			
Position	Professor			
Address	Zellescher Weg 19, D-01069 Dresden, Germany			
Phone number	+49-351-463-42250			
FAX number	+49-351-463-			
E-mail	zuber@physik.tu-dresden.de			
Full Name	Yoshitaka Fujita			
Institution	RCNP, Osaka University			
Position	Associate Professor			
Address	Machikaneyama, Toyonaka, Osaka, 560-0043			
Phone number	+81-6-6850-5506			
E-mail	fujita@rcnp.osaka-u.ac.jp			
Full Name	Hidetoshi Akimune			
Institution	Dept. of Physics, Konan University			
Position	Professor			
Address	Kobe, 658-850 Japan			
Phone number	+81-78-435-2470			
E-mail	akimune@konan-u.ac.jp			
Full Name	Hiroyasu Ejiri			
Institution	RCNP, Osaka University, Japan			
Position	Professor			
Address	Mihogaoka, Ibaraki, Osaka 567-0047			
Phone number	+81-6-6879-8908			
FAX number	+81-6-6879-8899			
E-mail	ejiri@rcnp.osaka-u.ac.jp			
	V -			

EXPERIMENTAL GROUP:

Name	Institution	<u>Title or Position</u>
H. Akimune	Dept. of Physics, Konan University	Professor
F. Diel	IKP, Köln University	PhD student
H. Ejiri	RCNP, Osaka University	Professor (Em.) & Czech Techn. Univ.
D. Frekers	IKP, Univ. Münster, Germany	Professor
H. Fujita	RCNP, Osaka University	Researcher
Y. Fujita	RCNP, Osaka University	Associate Professor
E. Ganioglu	Science Faculty, Istanbul University	Associate Professor
K. Hatanaka	RCNP, Osaka University	Professor
C. Iwamoto	RCNP, Osaka University	Researcher
A. Negret	IFIN-HH, Bucharest-Magurele, Romania	Researcher
B. Liu	RCNP, Osaka University	PhD student
H.J. Ong	RCNP, Osaka University	Lecturer
T. Shima	RCNP, Osaka University	Associate Professor
G. Susoy	Science Faculty, Istanbul University	Assistant Professor
A. Tamii	RCNP, Osaka University	Associate Professor
W. Werner	Technical University of Darmstadt	Adjunct Professor
R. Zegers	MSU/NSCL, East Lansing, Michigan, USA	Professor
K. Zuber	IKTP, TU Dresden, Germany	Professor

RUNNING TIME (in order of priority):

¹¹⁶Cd and ¹¹⁶Sn data taking run Measurement time tuning and for calibration In order to get the GT strength from the cross section, one needs a ¹¹⁴Cd calibration measurement with known GT nuclear matrix element from β -decay. Furthermore, because of the low Q-value of ¹¹⁶Cd also a calibration with ¹⁰⁰Mo is required. To get good coverage over a wide energy range also ²⁶Mg and ²⁴Mg is foreseen. In addition a background run and tuning is required.

Ring : WS course

BEAM LINE:

REAM	REQUIREMENTS:	
DLAM		

·	Type of particle	³ He	
	Beam energy	$420 { m MeV}$	
	Beam intensity	$10 \sim 20 \text{ nA}$	
	Energy resolution	ΔE 35 keV, small emittance	
BUDGET: Local support for non-RCNP participants		CNP participants	

SCHEDULE: We request the beam time in September/October 2015 at the earliest

1 Summary of Experiment

• Proposed experiment:

We propose to study the GT^- strength distributions with the highest possible resolution in the nuclei ¹¹⁶Cd and ¹¹⁶Sn by means of the (³He,t) reaction at 420 MeV. The first nucleus is presently in focus of the study of double-beta decay (DBD), where various other double beta emitters have already been explored within RCNP experiment E294 providing extremely valuable information for the field of neutrino physics and nuclear matrix elements (NME) for double beta decay. Since 1990's (³He,t) measurements on most of the prefered DBD nuclei (Ge,Se, Mo, Te, Xe) have been studied with improved energy-resolution by the Charge Exchange Reaction DBD group at RCNP [1]. This isotope also might serve as a very good candidate for future detection of solar and supernova neutrinos. ¹¹⁶Sn, the daughter of the ¹¹⁶Cd DBD, is very important for nuclear structure studies as it would extend an already proposed sensitive study (measuring CER on ¹¹⁸Sn and ¹²⁰Sn) of a series of isotopes with equal mass but different isospin.

The (³He,t) reaction at $E/A \sim 150$ MeV is a good probe to study the intermediate states in the $\beta\beta$ -decay from the GT⁻ direction as discussed in a recent review articles and references therein [2]. Together with data from experiments using the (d,²He) reaction on ¹¹⁶Sn [3] at KVI, which excite the same states from the GT⁺ direction, our results will provide important experimental information about the matrix elements of the two-neutrino double-beta ($2\nu\beta\beta$) decay. Further, the data will be equally important for model calculations, which are needed to determine the matrix elements of the neutrinoless double beta decay ($0\nu\beta\beta$), because at small angles also the spin-dipole component can be measured. These are the key for the extraction of the neutrino mass if such a decay is observed in any of the present counting experiments, like COBRA, GERDA, CANDLES, EXO or KamLAND-Zen and future experiments like MAJO-RANA, MOON, CUORE and others. In addition, the obtained data will precisely determine the potential of a large scale detector based on ¹¹⁶Cd for supernova and solar neutrino detection.

RCNP is the only facility world wide, where the proposed (³He, t) reaction experiments at a resolution on the order of 40 keV can be carried out. Activities have already started around 1990 at RCNP to achieve a superb energy resolution. Actually, the resolution is now improved by about one order of magnitude compared with previous experiments in the 1990's. Thus, we propose to use a 140 MeV/nucleon ³He beam from the RCNP Ring Cyclotron in high resolution mode. The outgoing tritons will be momentum analyzed by the Grand Raiden spectrometer. The ion-optical conditions *dispersion matching* and *angular dispersion matching* will be realized between the spectrometer and the WS beam line to achieve a high momentum resolution and good angular resolution. The over-focus mode of the spectrometer is essential in realizing good angular resolution in vertical direction and also in correcting kinematic aberrations.

• Apparatus and beam properties:

The spectrometer Grand Raiden and the standard VDC focal plane detector system will be used for the analysis and detection of outgoing tritons. We request ≈ 10 nA of good quality single-turn extracted 140 MeV/nucleon ³He beam. In order to realize various matching conditions, various capabilities of the WS course will be fully utilized.

• Beam time request:

High-resolution $({}^{3}\text{He}, t)$ spectra will be measured at 0° and small angles. In order to achieve a high resolution, the effect of energy spread in the target should be minimized. The energy spread in the target is mainly caused by the different energy losses of ³He and t particles, and thus, a sufficiently small target thickness is important. The thin target should be made out of isotopically enriched ¹¹⁶Cd which is commercially available with 90% abundance. A parallel development of a ¹¹⁶Sn target is proposed which would allow to study a nucleus with the same mass as other tin isotopes already proposed but different isospin in great detail. This is a very interesting nuclear structure topic by itself as there is already an submitted proposal for studying ¹¹⁸Sn and ¹²⁰Sn. By realizing the angular dispersion matching and over-focus mode of the spectrometer, we can achieve a good angle resolution. In the E220 experiment on ⁴⁸Ca we have seen, that an angular distribution up to 4° can be made available by measuring at 0° and 2.5° . Therefore, we ask to perform the measurement also at angles up to 4° to identify unambiguously the 1^+ levels and to study the spin-dipole 2^- states. In the past, it was also found that a high quality ³He beam with small emittance and momentum spread results in better experimental conditions.

For the measurement we need 2.5 days for each real target run (at two angles), as will be described in Sec. 4.

The total requested beam time consists of

- (1) measurements for the both targets : 2 targets x 2.5 days
- (2) background subtraction, tuning and energy calibration runs : 2.0 days

• Schedule:

We request the beam time preferentially in the period end of 2015 to beginning of 2016. The beam time could be attached to a recently submitted proposal of the E424 experiment to study the Gamow-Teller strength in odd-A high S_p nuclei.