E453

PROPOSAL FOR EXPERIMENT AT RCNP

February 25, 2015

TITLE: The $\nu 0h_{9/2}$ and $\nu 0i_{13/2}$ single-particle energies at 137 Xe

SPOKESPERSON:

Full Name	Benjamin P. Kay
Institution	Argonne National Laboratory
Title or Position	Assistant physicist
Address	9700 South Cass Avenue, Lemont, IL 60439
Phone number	+1-630-252-4278
E-mail	kay@anl.gov

EXPERIMENTAL GROUP:

N. Aoi	RCNP, Osaka University, Japan	Professor
J. A. Clark	Argonne National Laboratory, USA	Physicist
J. P. Entwisle	University of Manchester, UK	PhD student
S. J. Freeman	University of Manchester, UK	Professor
T. Ito	RCNP, Osaka University, Japan	PhD student
C. Iwamoto	RCNP, Osaka University, Japan	Postdoctoral researcher
C. R. Hoffman	Argonne National Laboratory, USA	Assistant Physicist
B. P. Kay	Argonne National Laboratory, USA	Assistant Physicist
M. Miura	RCNP, Osaka University, Japan	PhD student
S. Noji	RCNP, Osaka University, Japan	Assistant Professor
J. P. Schiffer	Argonne National Laboratory, USA	Senior Physicist
D. K. Sharp	University of Manchester, UK	Postdoc
S. Szwec	University of Manchester, UK	PhD student
A. Tamii	RCNP, Osaka University, Japan	Associate Professor
R. Tang	RCNP, Osaka University, Japan	$Postdoctoral\ researcher$

RUNNING TIME: BEAM LINE: BEAM REQUIREMENTS:	Type of particle: Beam energy: Beam intensity: Other requirements:	$\begin{array}{c} 2.5 \ \mathrm{days} \\ \mathrm{Grand} \ \mathrm{Raiden} \\ {}^{4}\mathrm{He}^{2+} \\ 100 \ \mathrm{MeV} \\ <\!50 \ \mathrm{nA} \end{array}$
BUDGET:	Experimental expenses:	

TITLE: The $\nu 0h_{9/2}$ and $\nu 0i_{13/2}$ single-particle energies at ¹³⁷Xe SPOKESPERSON: Benjamin P. Kay

SUMMARY OF THE PROPOSAL

Measurement

A measurement of the $(\alpha, {}^{3}\text{He})$ reaction on the N = 82 isotope ${}^{136}\text{Xe}$ is proposed. The goal is to accurately determinate the $\nu 0h_{9/2}$ and $\nu 0i_{13/2}$ single-particle energies at ${}^{137}\text{Xe}$. Earlier work has shown that in heavier N = 83 nuclei, ${}^{139}\text{Ba}$, ${}^{141}\text{Ce}$, ${}^{143}\text{Nd}$, and ${}^{145}\text{Sm}$, these single-particle strengths are fragmented always into two states, arising from the coupling of the $1f_{7/2}$ neutron state to the 2^+ and 3^- vibrations with appropriate spin. To date, only the excitation energy of the two fragments of the $0h_{9/2}$ strength have been observed in ${}^{137}\text{Xe}$ and that of the lower $13/2^+$ state. Spectroscopic information is limited to data from the (d,p) reaction and heavy-ion transfer reactions, neither of which reliably extracted the spectroscopic factors necessary to reconstruct the single-particle energies of these high-j states as had been done in the heavier nuclei. The $(\alpha, {}^{3}\text{He})$ reaction is the ideal probe, being well matched in momentum for the transfer of $\ell = 5$ and 6.

The data will allow for a more robust extrapolation of these excitations to 135 Te and 133 Sn, better guiding future radioactive-ion-beam experiments. The data will also impact and be impacted by recent works relating to the neutrinoless double beta decay of 136 Xe. A recent determination of the proton occupancies of 136 Xe and 138 Ba at RCNP have greatly reduced the uncertainties of these properties. They are combined with the calculated tensor matrix elements to describe the relative changes of the single-neutron energies due to the tensor interaction and thus allowing for a more detailed comparison between experiment and theory. Further, it will place more stringent limits on the assumption that the N = 82 neutron shell gap is a robust closure, which is important for a recent measurement concerning the neutron occupancies of this neutrinoless-double-beta-decay candidate. A consistency check will be carried out by re-measuring the same reaction on the well-studied 144 Sm target under the same conditions as for the 136 Xe target.

Apparatus and beam properties

We will use the RCNP gas target in the scattering chamber of the Grand Raiden spectrometer. Measurements will be performed with a 100-MeV 4 He beam.

Beam time required

We request 2.5 days of beam time to perform this measurement.