PROPOSAL FOR EXPERIMENT AT RCNP

7 Feb 2017

TITLE:

Exploring the shape of doubly-magic $^{40}\mathrm{Ca}$ through low-energy Coulomb excitation

SPOKESPERSON:

Full Name	M. Kumar Raju
Institution	RCNP, Osaka University
Title or Position	Postdoctoral Fellow
Address	10-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
Phone number	+81-6-6879-8850
FAX number	+81-6-6879-8899
E-mail	kumar@rcnp.osaka-u.ac.jp
Address Phone number FAX number E-mail	10-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japa +81-6-6879-8850 +81-6-6879-8899 kumar@rcnp.osaka-u.ac.jp

Full Name	Eiji Ideguchi
Institution	RCNP, Osaka University
Title or Position	Associate Professor
Address	10-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
Phone number	+81-6-6879-8858
FAX number	+81-6-6879-8899
E-mail	ideguchi@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
Nori Aoi	RCNP, Osaka University	Professor
Atsushi Tamii	RCNP, Osaka University	Associate Professor
R. Palit	Tata Institute of Fundamental Research (TIFR)	Associate Professor
Yongde Fang	RCNP, Osaka University	Post-doc
Nico Orce	University of Western Cape	Professor
Johann Issak	RCNP, Osaka University	Post-doc
Nobu Kobayashi	RCNP, Osaka University	Post-doc
Hooi Jin Ong	RCNP, Osaka University	Lecturer
Thi Ha Hoang	RCNP, Osaka University	M1
Takeshi Koike	Tohoku University	Associate Professor
Michael Carpenter	Argonne National Laboratory	Staff Physicist
Umesh Garg	University of Notre Dame	Professor
P. V. Madhusudhana Rao	Andhra University	Assistant Professor
Minliang Liu	Institute of Modern Physics, CAS	Researcher

Full Name	Institution	Title or Position
Guangshun Li	Institute of Modern Physics, CAS	Associate Researcher
Jianguo Wang	Institute of Modern Physics, CAS	Associate Researcher
Bingshui Gao	Institute of Modern Physics, CAS	Assistant Researcher
Yasutaka Yamamoto	RCNP, Osaka University	D2
Tetsuya Yamamoto	RCNP, Osaka University	D2
Azusa Inoue	RCNP, Osaka University	D2
Craig Mehl	University of Western Cape	D2
Makabata	University of Western Cape	D1
Md.Sazedur Rahaman Laska	ar Tata Institute of Fundamental Research (TIFR)	D2
Farhan Babra	Tata Institute of Fundamental Research (TIFR)	D2
and CAGRA Collaboration		
RUNNING TIME: Inst	tallation time without beam	2 days
Tes	t running time for experiment	0.5 days
Dat	za runs	5.5 days
BEAM LINE:	E	N course
BEAM REQUIREMEN	TS: Type of particle 40 Ca, halo-free, small end	mittance
·	Beam energy	$167 { m MeV}$
	Beam intensity	$\leq 5 \text{ pnA}$

BUDGET:Experimental expenses: 1) Enriched ¹⁹⁴Pt target: 300,000 yen2) Minor modifications to the existing scattering chamber and
beam port: 300,000 yen3) Total : 600,000 yen

TITLE:

Exploring the shape of doubly-magic $^{40}\mathrm{Ca}$ through low-energy Coulomb excitation

SPOKESPERSON: M. Kumar Raju, Eiji Ideguchi

SUMMARY OF THE PROPOSAL

In this proposal, we aim to study the shape of ⁴⁰Ca through determining the spectroscopic quadrupole moment, Q_S of first 2⁺ state in ⁴⁰Ca through Coulomb-excitation reorientation effect measurement. The doubly magic $(N = Z = 20)^{40}$ Ca nucleus is one of the best cases in the mass 40 region to observe multiple shape coexistence as it has several excited 0^+ deformed configurations. The rotational band built on the 0^+_3 state was reported to have $\beta \approx 0.59$, indicating superdeformed band (SD) structure and the band based on the 0_2^+ state was known to have $\beta \approx 0.27$, indicating normal deformed (ND) structure. The theoretical calculations based on a cranked relativistic mean-field (CRMF), and a large-scale shell model (LSM) predict that the SD band is associated with 8p-8h prolate configuration and the ND band is based on 4p-4h triaxial shape due to mixture of configurations between them, and indicating shape-coexistence in low energy spectrum of ⁴⁰Ca. Though these shapes are predicted based on the calculations and their agreement with the experimental transition quadrupole moments, Q_t , from lifetime measurements, the direct information about the shapes and the signs of electromagnetic moments are rather scarce. In this proposal, we aim to determine the sign and magnitude of Q_S of the first 2⁺ state at 3.9 MeV in the ND band, which will give a direct information on the shape of ND band and provide insight into the predicted shape coexistence.

The safe Coulomb-excitation reorientation effect is a direct method to extract the matrix elements which would provide the sign and magnitude of $\langle 2_1^+ || E2 || 2_1^+ \rangle$, and thereby the $Q_S(2^+)$. The CAGRA detector array at RCNP would be used to detect de-excited γ rays in coincidence with the scattered particles which will be detected using a double sided silicon CD type detector and an array of CsI detectors.