PROPOSAL FOR EXPERIMENT AT RCNP

4 Mar 2018

TITLE:

Performance test of a time projection chamber to search for the alpha condensed state in $^{24}\mathrm{Mg}$

SPOKESPERSON:

Institution Department of Physics, Kyoto University	
Title or Position M2	
Address Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502	2
Phone number $+81-75-753-3871$	
FAX number +81-75-753-3887	
E-mail kento@nh.scphys.kyoto-u.ac.jp	

EXPERIMENTAL GROUP:

Full Name	Institution		Title or Position	
T. Kawabata	Department of Phys	sics, Kyoto University	Associate Professor	•
F. Furuno	Department of Phys	sics, Kyoto University	D4	
M. Tsumura	Department of Phys	sics, Kyoto University	D4	
M. Murata	Department of Phys	sics, Kyoto University	D3	
Y. Fujikawa	Department of Phys	sics, Kyoto University	M1	
H. Akimune	Department of Phys	sics, Konan University	Professor	
M. Itoh	CYRIC, Tohoku Ur	niversity	Professor	
Y. Matsuda	CYRIC, Tohoku Ur	niversity	Assistant Professor	,
I. Tanihata	RCNP, Osaka University		Professor	
H.J. Ong	RCNP, Osaka Univ	ersity	Lecturere	
RUNNING 7	$7 \mathrm{~days}$			
	Beam tun	ing		$0.5 \mathrm{~days}$
	Detector s	etup		$0.5 \mathrm{days}$
	Performan	high intensity beam	1 day	
	Data runs		- ·	1 day
	Total		7	days + 3 days
BEAM REQ	UIREMENTS:	Type of particle		$^{4}\mathrm{He}^{2+}$
		Beam energy		$400 { m MeV}$
		Beam intensity		1 pnA
		Energy resolution		< 200 keV
		00	halo-free, s	mall emittance
BUDGET: Experiment		ntal expenses		1,000,000 yen

TITLE:

Performance test of a time projection chamber to search for the alpha condensed state in ^{24}Mg

SPOKESPERSON: Kento Inaba

SUMMARY OF THE PROPOSAL

Alpha particle clustering is important to discuss nuclear structure. Two protons and two neutrons in nuclei strongly correlate to each other and form an α cluster (⁴He nucleus). For example, the 0⁺₂ state in ¹²C is considered to have spatially well-developed 3 α cluster structure. Recently, this 0⁺₂ state in ¹²C has been of great interest as an α condensed state where the three α clusters are condensed into the lowest 0*s* orbit. It is theoretically suggested that the α condensed states exist in self-conjugate 4*n* nuclei not heavier than ⁴⁰Ca, however, there is still no experimental information in heavier nuclei than ¹²C.

We carried out an experiment to search for the α condensed states in ²⁴Mg at Research Center for Nuclear Physics (RCNP), Osaka University in 2010 as E308. Since the α condensed states are expected to decay with emitting several low-energy α particles, we tried to identify the α condensed states by a measurement of decay particles from the excited states in ²⁴Mg. However, the detection solid angle to measure the decay particles was as small as 3% of 4π in the previous experiment, thus we could not measure the α -decay events in sufficient statistics and draw a conclusion on the α condensed states in ²⁴Mg.

We newly plan an experiment to measure decay particles emitted from excited states in coincidence with inelastically scattered α particles using a TPC with very large angular coverage. In this experiment, a 400-MeV α beam is transported to a target ²⁴Mg installed in the sensitive volume of the TPC. The scattered α particles are momentum-analyzed by the Grand Raiden spectrometer to obtain excitation-energy spectra in ²⁴Mg. This experimental method with a combination of the TPC and Grand Raiden is an epochmaking way because it enables us to systematically search for the α condensed states in various self-conjugate 4n nuclei as well as in ²⁴Mg.

In this proposal, we propose a test experiment to examine performance of the TPC as a decay-particle detector using a high-intensity beam and feasibility of the new experiment to search for the α condensed states with the TPC and Grand Raiden.