RCNP Experiment E

Research Proposal to the

Research Center for Nuclear Physics, Osaka University (B-PAC Jan 2020)

Development of the Charge-Exchange Oslo Method and application towards constraining reaction rates for nucleosynthesis of cosmochronometer ⁹²Nb

SPOKESPERSON: Remco Zegers (Professor)

Address:	Facility for Rare Isotope Beams, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
Phone:	+1-517-908-7473
Email:	zegers@nscl.msu.edu

BACKUP SPOKESPERSON: Shumpei Noji (Physicist)

Address:	Facility for Rare Isotope Beams, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
Phone:	+1-517-908-7600
Email:	noji@frib.msu.edu

PARTICIPANTS:

D. Bazin	Michigan State University	Senior Physicist/Adjunct Professor	
A. Bracco	University of Milan/INFN Milan	Professor	
I. Brandherm	IKP, Technical University Darmstadt	Ph.D. Student	
F. Camera	University of Milan/INFN Milan	Associate Professor	
M. Ciemala	IFJ PAN Krakow	Assistant Professor	
F. Crespi	University of Milan/INFN Milan	Associate Professor	
M. DeNudt	Michigan State University	Ph.D Student	
H. Fujita	RCNP, Osaka University	Research Fellow	
Y. Fujita	RCNP, Osaka University	Professor	
M. Fujiwara	RCNP, Osaka University	Professor	
S. Giraud	Michigan State University	Postdoctoral Researcher	
M. Guttormsen	University of Oslo	Professor	
M. Harakeh	University of Groningen	Professor	
A. Inoue	RCNP Osaka University	Ph.D. Student	
J. Isaak	IKP, Technical University Darmstadt	Junior Research Group Leader	
N. Kalantar-Nayestanaki	University of Groningen	Professor	
M. Kmiecik	IFJ PAN Krakow	Associate Professor	

N. Kobayashi	RCNP, Osaka University	Assistant Professor
A. Larsen	University of Oslo	Associate Professor
S. Liddick	Michigan State University	Professor
C. Maher	Michigan State University	Ph.D Student
A. Maj	IFJ PAN Krakow	Professor
H. Mori	RCNP, Osaka University	M.Sc. Student
M. Murata	RCNP, Osaka University	Technical Assistant
F. Ndayisabye	Michigan State University	Ph.D Student
P. von Neumann-Cosel	IKP, Technical University Darmstadt	Professor
J. Pereira	Michigan State University	Staff Physicist
Z. Rahman	Michigan State University	Ph.D Student
J. Schmitt	Michigan State University	Ph.D Student
PA. Söderström	ELI-NP	Research Scientist III
M. Spall	IKP, Technical University Darmstadt	Ph.D. Student
A. Spyrou	Michigan State University	Professor
T. Sudo	RCNP, Osaka University	Ph.D. Student
A. Tamii	RCNP, Osaka University	Professor
Z. Yang	RCNP, Osaka University	Postdoctoral Researcher
O. Wieland	INFN Milan	Senior Researcher
J. Zamora	University of São Paulo	Postdoctoral Researcher

RUNNING TIME:

Installation and testing w	ithout beam:		~2 weeks
Optimization and Calibrat	tion with beam on target:		1 day
Data runs on ⁹⁰ Zr target			3 days
Data runs on ⁹² Zr target			3 days
BEAM LINE:			Ring/WS Course
BEAM REQUIREMENTS:	Type of particle		³ He ²⁺
	Beam energy		420 MeV
	Beam intensity		\leq 10 pnA
	Other requirements	Resolut	ion \leq 50 keV
		Dispersion-matched beam transpo	ort transport

BUDGET: We request support for setting up the SGD array at the target station of the Grand Raiden Spectrometer. We will provide the 4-mg/cm² ^{90,92}Zr targets.

SAFETY CONTROLLED ITEMS: None

Title: Development of the Charge-Exchange Oslo Method and application towards constraining reaction rates for nucleosynthesis of cosmochronometer 92Nb

SPOKESPERSON: Remco Zegers

Summary

It is proposed to measure the ^{90,92}Zr(³He,t+ γ) reactions at 420 MeV to develop the Charge-Exchange Oslo (CE-Oslo) method and to extract reaction rates for the nucleosynthesis of cosmochronometer ⁹²Nb. This high precision study will lay a solid foundation for using the CE-Oslo method in future (p,n+ γ) experiments in inverse kinematics with rare isotopes and make it possible to simultaneously extract nuclear level densities (NLDs), γ -ray strength functions (γ SFs), β -decay strengths and (β -delayed) neutron decay probabilities (P_n) on neutron-rich unstable nuclei, which are important for several nucleosynthesis processes, including the r, i, γ , and ν processes. This high resolution uniquely available for (³He,t) experiments at RCNP, in combination with the γ -coincidence measurements by using the SGD Array will make it possible to extract level densities in two independent manners: by using the Oslo technique on the correlation spectrum of γ -energy versus excitation energy and by using a combination of the fine-structure analysis and auto-correlation function analysis on the high-resolution singles spectrum. The latter technique has been applied in the past for ⁹⁰Zr and this component of the experiment serve as the benchmark of the CE-Oslo method. From the measurement on ⁹²Zr, we will be able to extract level densities and γ -ray strength functions of relevance of the γ -process in type Ia supernovae and Gamow-Teller strength distributions of relevance for the ν -process in core-collapse supernovae. These astrophysical phenomena are the possible sites for the production of long-lived ⁹²Nb, which can serve as a cosmochronometer.