PROPOSAL FOR EXPERIMENT AT RCNP

December 21, 2020

TITLE: Identification of the α -condensed state in 20 Ne

SPOKESPERSON:

Full Name	Satoshi Adachi
Institution	Department of Physics, Osaka University
Title or Position	Project Researcher
Address	Machikaneyama 1-1, Toyonaka, Osaka, Japan 560-0043
Phone number	+81-6-6850-5745
FAX number	+81-6-6850-5530
E-mail	adachi@ne.phys.osaka-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
T. Kawabata	Department of Physics, Osaka University	(Professor)
T. Furuno	Department of Physics, Osaka University	(Assistant Professor)
K. Sakanashi	Department of Physics, Osaka University	(M2)
K. Himi	Department of Physics, Osaka University	(B4)
S. Tsuji	Department of Physics, Osaka University	(B4)
J. Zenihiro	Department of Physics, Kyoto University	(Associate Professor)
K. Inaba	Department of Physics, Kyoto University	(D3)
Y. Fujikawa	Department of Physics, Kyoto University	(D2)
S. Okamoto	Department of Physics, Kyoto University	(M2)
S. Enyo	Department of Physics, Kyoto University	(M2)
Y. Hijikata	Department of Physics, Kyoto University	(M2)
R. Tsuji	Department of Physics, Kyoto University	(M1)
A. Tamii	RCNP, Osaka University	(Associate Professor)
N. Kobayashi	RCNP, Osaka University	(Assistant Professor)
Z. H. Yang	RCNP, Osaka University	(Specially appointed researcher)
M. Murata	RCNP, Osaka University	(Research Assistant)
A. Inoue	RCNP, Osaka University	(D3)
T. Sudo	RCNP, Osaka University	(D2)
H. Mori	RCNP, Osaka University	(M2)
M. Itoh	CYRIC, Tohoku University	(Professor)
Y. Matsuda	CYRIC, Tohoku University	(Assistant Professor)
H. Akimune	Department of Physics, Konan University	(Professor)
Y. Maeda	Faculty of Engineering, Miyazaki University	(Associate Professor)
H. Fujimura	School of Medicine, Wakayama Medical University	(Associate Professor)
M. Sferrazza	Département of Physisque, Université Libre de Bruxelles	(Professor)

RUNNING TIME:	Installatio	n time without beam	5 days
	Setup and	beam tuning time	2 days
	Data runs	10.0 days	
BEAM LINE:			Ring : WS course
BEAM REQUIREMENTS:		Type of particle	$^{4}\mathrm{He}^{++}$
		Beam energy	$386 { m MeV}$
		Beam intensity	$\leq 30 \text{ pnA}$
		Energy resolution	$\leq 100 \text{ keV}$
		RF timing resolution	$\leq 1 \text{ ns}$
		Achromatic beam transport	
		halo-free, small emittance	
BUDGET:	Experimental expenses		1,350,000 yen

SAFETY CONTROLLED ITEMS:

The VDCs of Grand Raiden $^{20}\mathrm{Ne}$ gas target

TITLE: Identification of the α -condensed state in ²⁰Ne

SPOKESPERSON: Satoshi Adachi

SUMMARY OF THE PROPOSAL

The alpha-cluster correlation is a very important property of atomic nuclei. It is theoretically suggested that the α condensation where alpha clusters are condensed state into the same lowest 0s orbit in their common mean field manifests at low densities and temperatures. The equation of state of nuclear matter is hence influenced by the α condensation.

The α condensation is expected to manifest in finite nuclei as the α -condensed state, and such α -condensed states similar to the famous Hoyle state in ¹²C are predicted to exist slightly above $k\alpha$ -decay thresholds in heavier self-conjugate A = 4k nuclei up to $k \sim 10$. Therefore, it should be examined whether the α -condensed states universally exist in heavier nuclei.

The candidate states of the α -condensed states are already assigned for ⁸Be, ¹²C, and ¹⁶O, but no known states have been assigned for heavier nuclei. Recently, we reported the candidate states of the α -condensed state in ²⁰Ne based on the results of the experiment E402. However, statistical significance of the candidate states is not fully high and we could not determine the spins and parities of these states.

We propose to identify the α -condensed state in ²⁰Ne by a series of measurements of the inelastic α scattering at forward angles including 0° in coincidence with the detection of the decay charged particles from the excited states. This coincidence measurement is very promising because we have already presented the candidates states in ²⁰Ne by the same measurement. A gas target with very thin gas-sealing windows enables low-energy decay charged particle to penetrate the target cell, and a new Si telescope array with a large solid angle, SAKRA, is employed to detect the decay charged particle in order to overcome the low luminosity due to the low mass thickness of the target. The proposed experiment should provide the convincing result for the α -condensed state in ²⁰Ne.