PROPOSAL FOR EXPERIMENT AT RCNP

28 Sep 2022

TITLE:

Towards constraining the neutrino interaction cross sections on 97,98 Mo and neutron capture cross section on 97 Tc using (³He,t+ γ) charge-exchange reactions

SPOKESPERSON:

Full Name	Bingshui Gao
Institution	Institute of Modern Physics, Chinese Academy of Sciences
Title or Position	Associate Researcher
Address	509 Nanchang Rd., Lanzhou, 730000, China
Phone number	+86-931-4969280
E-mail	gaobsh@impcas.ac.cn

SPOKESPERSON:

Full Name	Shinsuke Ota
Institution	Research Center for Nuclear Physics, Osaka University
Title or Position	Associate Professor
Address	10-1 Mihogaoka, Ibaraki, Osaka, 567-0047, JAPAN
Phone number	+81-6-6879-8855
E-mail	ota@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position			
A. Bracco	University of Milan/INFN Milan Professor				
J.W. Cai	Institute of Modern Physics	Ph.D. Student			
S. Chiba	Tokyo Institute of Technology	Professor			
F. Camera	University of Milan/INFN Milan	Associate Professor			
F. Crespi	University of Milan/INFN Milan Associate Professor				
MK. Cheoun	Soongsil University Professor				
H. Fujita	RCNP, Osaka University	University Cooperative Researcher			
Y. Fujita	RCNP, Osaka University	saka University Invited Professor			
M. Guttormsen	University of Oslo	Associate Professor			
T. Hayakawa	QST	Professor			
H. Huang	Institute of Modern Physics	Ph.D. Student			
A. Inoue	RCNP, Osaka University	Academic assistant			
J. Isaak	IKP, Technical University Darmstadt	Junior Research Group Leader			
T.Y. Jiao	Institute of Modern Physics	Ph.D. Student			
T. Kajino	Beihang University	Professor			
N. Kobayashi	RCNP, Osaka University	Assistant Professor			
M. Kmiecik	IFJ PAN Krakow	Associate Professor			
H. Ko	Soongsil University	Ph.D. Student			
A. Larsen	University of Oslo	Associate Professor			
K.A. Li	Institute of Modern Physics	Associate Researcher			
S. Liddick	Michigan State University	Professor			
A. Maj	IFJ PAN Krakow	Professor			
M. Murata	RCNP, Osaka University	Academic assistant			
P. von Neumann-Cosel	IKP, Technical University Darmstadt	Professor			

R. Niina	RCNP, Os	aka University	M2		
Y.F. Niu	Lanzhou U	Jniversity	Professor		
S. Noji	Michigan S	State University	Physicist		
H.J. Ong	Institute o	of Modern Physics	Researcher		
L.H. Ru	Institute o	of Modern Physics	Ph.D. Student		
P. Shuai	Institute o	of Modern Physics	Associate Researcher		
A. Spyrou	Michigan S	State University	Professor		
B.H. Sun	Beihang U	Iniversity	Professor		
A. Tamii	RCNP, Os	aka University	Professor		
X.D. Tang	Institute o	of Modern Physics	Researcher		
S. Terashima	Institute o	of Modern Physics	Researcher		
O. Wieland	INFN Mila	an	Senior Researcher		
R. Zegers	Michigan S	State University	Professor		
N.T. Zhang	Institute o	of Modern Physics	Associate Researcher		
J.L. Zhang	Institute o	f Modern Physics	Ph.D. Student		
RUNNING TIME:	Installation time without beam ~ 14 days				
	Developm	ent of device	$0.5 \mathrm{~days}$		
	Test runn	ing time for experiment	1.5 days		
	Data runs 4 davs				
	NOTE: The installation time (~ 14 days) could be signifi-				
	cantly reduced if scheduled together with E550 due to similar				
	setups				
BEAM LINE:	betupb		Ring : WS course		
BEAM REQUIREM	IENTS:	Type of particle	\sim ³ He ²⁺		
		Beam energy	420 MeV		
	Beam intensity $2 \sim 10$ pnA (depending on target)				
	Other requirements $=$ energy resolution < 50 keV				
	Dispersion-mathed beam transport				
		Dispersion	mathed beam transport		
BUDGET:	We request support for setting up the SGD array the target sta-				
	tion of the Grand Raiden Spectrometer (Similar as the E550).				
	We will provide the 97 Mo (1 mg/cm ²) and 98 Mo (4 mg/cm ²)				
	targets.				

SAFETY CONTROLLED ITEMS: None

TITLE:

Towards constraining the neutrino interaction cross sections on $^{97,98}\text{Mo}$ and neutron capture cross section on ^{97}Tc using (³He,t+ γ) charge-exchange reactions

SPOKESPERSON: Bingshui Gao

SUMMARY OF THE PROPOSAL

Core-collapse supernova (CCSN), which signals the death of a massive star, is among the key subjects of astrophysical studies. Large amount of neutrinos carrying important information on CCSN are emitted during the explosion. Those neutrinos have many observational consequences from which secrets on CCSN can be revealed. In this proposal, we focus on two appealing cases which are closely related to the CCSN neutrinos: the nucleosynthesis of ⁹⁸Tc in CCSN and geochemical neutrino detectors exploiting molybdenum ores.

The radioactive isotope ⁹⁸Tc ($T_{1/2} = 4.2 \times 10^6$ years) might have existed in the early solar system. It cannot be synthesised in stars via the rapid-neutron or slow-neutron capture processes due to the stable isobar ⁹⁸Mo. Theoretical calculations indicate that the neutrino-induced reaction ⁹⁸Mo(ν_e , e^-)⁹⁸Tc and neutron capture ⁹⁷Tc(n, γ)⁹⁸Tc are the main reactions responsible for the synthesis of ⁹⁸Tc in CCSN. We propose to determine their reaction cross sections *simultaneously* using the ⁹⁸Mo(³He,t+ γ) ⁹⁸Tc reaction. This can be achieved by measuring the Gamow-Teller strength $B(GT^-)$ from ⁹⁸Mo and extracting the level densities and γ strength functions in ⁹⁸Tc via Oslo analysis. Once the abundance of ⁹⁸Tc can be accurately determined in meteorites and combined with data from this proposal, important constraints on CCSN models can be obtained.

Geochemical neutrino detectors are natural long-term detectors that integrate neutrino fluxes from the Sun and CCSNe. Molybdenum ore is one such example where the number of ${}^{97}\text{Tc}$ atoms ($T_{1/2} = 4.2 \times 10^6$ years) have recorded information on the neutrino flux in the past millions year. The ${}^{97}\text{Tc}$ in molybdenum ore are produced mainly through the ${}^{97}\text{Mo}(\nu_e, e^-){}^{97}\text{Tc}$ (solar neutrino) and the ${}^{98}\text{Mo}(\nu_e, e^-n){}^{97}\text{Tc}$ (SN neutrino) reactions. Their cross sections, which are crucial to decipher information on neutrino flux from molybdenum ore, will be determined in this proposal. For this purpose, we will perform (${}^{3}\text{He}$,t) charge-exchange reactions on ${}^{97}\text{Mo}$ target in addition to the ${}^{98}\text{Mo}$ target mentioned above to extract the $B(GT^-)$ s. The neutron emission branching ratio will also be determined in the case of ${}^{98}\text{Mo}$ target.