28/08/2000

TITLE:

High Resolution Study of 0^- states in ${}^{16}O$

SPOKESPERSON:

Tomotsugu WAKASA, Research Associate, RCNP, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047, Japan Phone number : +81-6-879-8935 FAX number : +81-6-879-8899 E-mail : wakasa@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

K. Hatanaka	RCNP	Р	T. Noro	RCNP	A.P.
M. Yosoi	RCNP	R.A.	G. P. Berg	RCNP	COE
H. Fujimura	RCNP	D	H. Yoshida	RCNP	D
E. Obayashi	RCNP	D	J. Kamiya	RCNP	D
D. Hirooka	RCNP	Μ	Y. Shimizu	RCNP	Μ
Y. Kitamura	RCNP	Μ	H. Sakaguchi	Kyoto Univ.	A.P.
H. Takeda	Kyoto Univ.	D	M. Itoh	Kyoto Univ.	D
T. Kawabata	Kyoto Univ.	D	M. Uchida	Kyoto Univ.	D
Y. Yasuda	Kyoto Univ.	Μ	K. Hosono	Himeji	Р

RUNNING TIME:

Test running time for experiment	2 days
Data runs	8 days

BEAM LINE: WS (WS beam line + Grand Raiden)

BEAM REQUIREMENTS:

Type of particle	Polarized Protons
Beam energy	$392 { m MeV}$
Beam intensity	10 nA on target
Energy resolution	< 100 keV (FWHM)
Beam polarization	> 0.7
Injection mode	High Resolution Mode
WS transport mode	Dispersive/Achromatic Modes

BUDGET:

Summary of budget request	$1,\!450,\!000$
Experimental expenses	$950,\!000$
Travel plan	500,000

SPOKESPERSON: Tomotsugu WAKASA

SUMMARY OF THE PROPOSAL

Isovector $J^{\pi} = 0^{-}, 0^{\pm} \rightarrow 0^{\mp}$ excitations are of particular interest since they carry the simplest pion-like quantum number. At low momentum transfers, they have been investigated in beta decay and muon capture experiments [1, 2, 3]. Axial-vector and pseudoscalar currents are responsible for these first-forbidden transitions in nuclear weak processes. Gagliardi *et al.* [1] reported an enhancement of the decay rate by more than a factor 3 for the first-forbidden beta decay of the 120 keV, 0^{-} state in ¹⁶N. This enhancement can be explained by considering the meson-exchange effects [4].

The (p, n) and (p, p') reactions are suited to study these transitions for a wide momentumtransfer range [5]. Orihara *et al.* [6] reported the angular distribution for the ${}^{16}O(p, n){}^{16}N(0^-, 0.12 \text{ MeV})$ reaction at $T_p = 35 \text{ MeV}$. The discrepancy between the distorted wave Born approximation (DWBA) calculation and their data in the large momentum transfer region of $q = 1.4-2.0 \text{ fm}^{-1}$ has been observed, which might be due to the effect of the enhancement of the pion probability in the nucleus [7, 8, 9, 10, 11]. However, in the proton inelastic scattering to the 0^- , T = 1 state in ${}^{16}O$ at $T_p = 65 \text{ MeV}$, such an enhancement was not observed [12]. The differences between (p, n) and (p, p') results might indicate the contribution from complicated reaction mechanisms in these low incident energies.

At intermediate energies of $T_p > 100$ MeV, where reaction mechanisms are expected to be simple, there are data only for the 0⁻, T=0 transition at $T_p = 135$ [13, 14], 180 [14], 200 MeV [15], 318 MeV [16], and 400 MeV [17]. Most of these measurements were not performed with sufficient energy resolution to isolate the 0⁻, T = 0 state at $E_x = 10.96$ MeV from its strong neighboring doublet (3⁺ and 4⁺) which is only about 140 keV away. It should be noted that there is no published experimental data for the 0⁻, T = 1 state at $E_x = 12.80$ MeV in this energy region.

In this experiment, we measure cross sections and analyzing powers for inelastic excitations of 0^- , T=0 (10.96 MeV) and 0^- , T=1 (12.80 MeV) unnatural-parity states in ¹⁶O in 392 MeV inelastic proton scattering from ¹⁶O. The results will be studied in a framework of DWIA with shell-model (SM) wave functions. Such a comparison will provide us information on tensor and spin-spin components of effective NN interactions. Furthermore data will be compared with DWIA calculations employing RPA response functions in order to assess the pionic enhancement in a large momentum-transfer region.

参考文献

- [1] G. A. Gagliardi et al., Phys. Rev. Lett. 48, 914 (1982).
- [2] P. Guichon *et al.*, Phys. Rev. C **19**, 987 (1979).
- [3] E. G. Adelberger *et al.*, Phys. Rev. Lett. **46**, 695 (1981).
- [4] K. Kubodera *et al.*, Phys. Rev. Lett. **40**, 755 (1978).
- [5] W. G. Love et al., in Proceedings of International Conference on Spin Excitations, Telluride, Colorado, 1982, edited by F. Petrovich et al., (1982).
- [6] H. Orihara et al., Phys. Rev. Lett. 49, 1318 (1982).
- [7] C. H. Llewellyn Smith, Phys. Lett. **128B**, 107 (1983).
- [8] M. Ericson and A. W. Thomas, Phys. Lett. **128B**, 112 (1983).
- [9] B. L. Friman, V. R. Pandharipande, and R. B. Wiringa, Phys. Rev. Lett. 51, 763 (1983).
- [10] E. L. Berger, F. Coester, and R. B. Wiringa, Phys. Rev. D 29, 398 (1984).
- [11] D. Stump, G. F. Bertsch, and J. Pumlin, AIP Conf. Proc. 110, 339 (1984).
- [12] K. Hosono *et al.*, Phys. Rev. C **30**, 746 (1984).
- [13] J. J. Kelly et al., Phys. Rev. C 39, 1222 (1989).
- [14] J. J. Kelly et al., Phys. Rev. C 41, 2504 (1991).
- [15] R. Sawafta et al. IUCF Scientific and Technical Report, May 1988–April 1989, p.19.
- [16] J. J. Kelly et al., Phys. Rev. C 43, 1272 (1991).
- [17] J. D. King *et al.*, Phys. Rev. C 44, 1077 (1991).