PROPOSAL FOR EXPERIMENT AT RCNP

28 May 2001

TITLE: Three-nucleon force effects in 2H(p,p)np reaction

SPOKESPERSON:

Full Name	Kenshi SAGARA	
Institution	Department of Physics, Kyushu University	
Title or Position	Associate Professor	
Address	6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan	
Phone number	+81 - 92 - 642 - 2546	
FAX number	+81 - 92 - 642 - 2546	
E-mail	sagara@kutl.kyushu-u.ac.jp	

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
Kenshi SAGARA	Department of Physics, Kyushu University	(AP)
Tetsuo NORO	Department of Physics, Kyushu University	(\mathbf{P})
Takanori YAGITA	Department of Physics, Kyushu University	(D3)
Takashi ISHIDA	Department of Physics, Kyushu University	(M2)
Schuichi OCHI	Department of Physics, Kyushu University	(M2)
Shinya NOZOE	Department of Physics, Kyushu University	(M1)
Kichiji HATANAKA	RCNP, Osaka University	(\mathbf{P})
Tomotsugu WAKASA	RCNP, Osaka University	(A)
Yasuhiro SAKEMI	RCNP, Osaka University	(AP)
HidetomoYOSHIDA	RCNP, Osaka University	(RF)
Jun-ichiro KAMIYA	RCNP, Osaka University	(D2)
Youhei SHIMIZU	RCNP, Osaka University	(M2)

RUNNING TIME:	Installation time without beam	2 days(for each beam time)
	Test running time for experiment	2 days
	Data runs	6 days

BEAM LINE:

Ring : WS course

BEAM REQUI	REMENTS: Type of p	particle polarized p
	Beam ene	ergy 250 MeV
	Beam int	ensity $\leq 10 \text{ nA}$
	Beam size	≤ 2 mm in diam
BUDGET:	Experimental expense	es 1,000,000 yen
	Travel plan	500,000 yen
	Total	1,500,000 yen

TITLE: Three-nucleon force effects in ${}^{2}\mathrm{H}(p,p)np$ reaction

SPOKESPERSON: Kenshi SAGARA

SUMMARY OF THE PROPOSAL

Since Witala et al. explained in 1998 that 2π exchange three-nucleon force $(2\pi 3\text{NF})$ is the origin of the large discrepancy in the Nd cross section minimum, new experimental evidences for the $2\pi 3\text{NF}$ have been searched in 3N systems. However, new clear evidences have not been found out yet.

Recently Witala has predicted that large effects of the $2\pi 3NF$ remarkably appear in the cross section and A_y of D(n, n)pn reaction at $E_n = 250$ MeV- 400 MeV. There are no experiments to be compared with his prediction. Therefore, we plan to measure the cross section and A_y of $D(p, p_1)np_2$ and $D(p, p_1p_2)n$ reactions at 250 MeV at 3 angles. The effects of Coulomb force, which are not included in the theoretical prediction, are expected to be well estimated from the difference between the present $D(p, p_1p_2)n$ experiment and $D(p, n_1n_2)p$ calculation.

We use a liquid D_2 target, which we have developed and have successively used for our $H(d, {}^{3}He)\gamma$ experiment at RCNP. Since C(p, p') cross section is about an order of magnitude larger than D(p, p)pn cross section at the kinematical condition of interest for the 3NF, use of a liquid D_2 target is very effective to reduce the number of unfavorable protons from C and other materials in the target. The present liquid target needs a slight improvement for this experiment. The improvement and test operation are made at Kyushu University.

Protons from the d + p breakup reaction are detected by using LAS. The energy range of the detected protons of interest is covered by three momentum bins defined by the magnetic fields of LAS. Measurements of $D(p, p_1)np_2$ reaction and $D(p, p_1p_2)n$ reaction are made simultaneously.

The examination of the $2\pi 3$ NF effects is made at different three angles. The time necessary for the data taking at three angles is 4.5 days, excluding the time for starting up and checking the data taking system.

Expected experimental errors for the $D(p, p_1)np_2$ reaction are estimated to be about 0.003 for A_y and 3%-5% for the cross section. The predicted $2\pi 3NF$ effects in the reaction are about 0.02 for A_y and about 30% for the cross section. Therefore, the $2\pi 3NF$ effects can be well distinguished if they are large as predicted.