PROPOSAL OF EXPERIMENT AT RCNP

15 Jan. 2002

TITLE :

Fine Structure of the Gamow-Teller and Spin-Dipole Resonance in Heavy Nuclei

SPOKESPERSONS:

Peter von Neumann-Cosel, IKP, Technische Universität Darmstadt, D-64289 Darmstadt, Germany; e-mail: VNC@ikp.tu-darmstadt.de

Yoshitaka Fujita, Department of Physics, Osaka University, Toyonaka, Osaka 560-0043; e-mail: fujita@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

T. Adachi, M2, Osaka University G.P.A. Berg, COE Professor, RCNP, Osaka University J. Carter, Senior Lecturer, Univ. of the Witwatersrand, South Africa H. Fujimura, D3, RCNP, Osaka University H. Fujita, D3, Osaka University, Japan K. Hara, D2, RCNP, Osaka University K. Hatanaka, Professor, RCNP, Osaka University Y. Kalmykov, Res. Assistant, IKP, Technische Universität Darmstadt J. Kamiya, RCNP, D2, Osaka University T. Kawabata, Researcher, RCNP, Osaka University A. Richter, Professor, IKP, Technische Universität Darmstadt A. Shevchenko, Res. Assistant, IKP, Technische Universität Darmstadt Y. Shimbara, D2, Osaka University Y. Shimizu, M2, RCNP, Osaka University R. Smit, Senior Researcher, National Acc. Center, South Africa M. Uchida, D2, Kyoto University M. Yosoi, Res. Associate, RCNP, Osaka University R.G.T. Zegers, Visiting Researcher, SPring-8, JAERI, Sayo, Hyogo 3

RUNNING TIME :	Beam preparation and beam tuning	$2.0 \mathrm{~days}$
	Data runs	$7 \mathrm{~days}$

BEAM LINE :	WS o	WS course (dispersive beam transportation)			
APPARATUS :	Gra	nd Raiden, standard VDC			
BEAM REQUIRE	MENTS :	Type of particle Beam energy Beam intensity Beam energy resolution Beam quality	³ He 420 MeV 10-20 nA less than 150 keV single turn, halo free		
BUDGET :	Traget preparation		$0.5 \mathrm{~M}$ Yen		
SCHEDULE :	Before th	e summer shutdown of 2002			

TITLE :

Fine Structure of the Gamow-Teller and Spin-Dipole Resonance in Heavy Nuclei

SPOKESPERSONS :	von Neumann-Cosel, Peter	and	Fujita, Yoshitaka
-----------------	--------------------------	-----	-------------------

SUMMARY OF THE PROPOSAL

We propose a measurement of the Gamow-Teller (GT) and spin-dipole (SDR) resonances in 90 Zr and 208 Pb with good statistics and the highest possible energy resolution ($\Delta E \leq 50$ keV FWHM) using the (3 He,t) reaction at 0°. The main aim is to search for characteristic scales in the fine structure of these modes utilizing recently developed new tools based on wavelet and multifractal analysis techniques. As has been demonstrated for the example of the isoscalar giant quadrupole resonance in 208 Pb, these scales provide unique insight into the damping of resonances through internal mixing. Furthermore, even in the regime of not fully resolved individual states, spin- and parity-separated level densities can be extracted from the data. These provide an interesting test case for recent level density calculations using the shell-model Monte Carlo technique which find a strong parity dependence not included in empirical approaches like the back-shifted Fermi gas model.

Additionally, we request some beam time for an exploratory study of a heavy deformed nucleus in the rare-earth region (e.g. 168 Er). Besides the above motivations, a search for the analog of the spin-flip M1 resonance observed in small-angle (p,p') experiments at TRIUMF on several rare-earth nuclei is of particular interest. The measurement of the GT strength in 90 Zr is also of interest in relation with the quenching problem.