PROPOSAL FOR EXPERIMENT AT RCNP

19 July 2002

TITLE: Detailed Study of Gamow-Teller Strengths in T=1 fp Shell Nuclei

SPOKESPERSON:

Full Name	Tatsuya Adachi				
Institution	Department of Physics, Osaka University				
Position	Doctor cource student				
Address	Machikaneyama, Toyonaka, Osaka, 560-0043				
Phone number	+81-6-6850-5507				
FAX number	+81-6-6850-5516				
E-mail	adachi@lns.sci.osaka-u.ac.jp				
Full Name	Peter von Brentano				
Institution	Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany				
Position	Professor				
E-mail	brentano@ikp.uni-koeln.de				
Full Name	Yoshitaka Fujita				
Institution	Department of Physics, Osaka University				
Position	Associate Professor				
Address	Machikaneyama, Toyonaka, Osaka, 560-0043				
Phone number	+81-6-6850-5506				
FAX number	+81-6-6850-5516				
E-mail	fujita@rcnp.osaka-u.ac.jp				

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
G.P.A. Berg	RCNP, Osaka University	COE Professor
H. Fujita	RCNP, Osaka University	Researcher
K. Fujita	RCNP, Osaka University	M2
K. Hara	RCNP, Osaka University	D3
K. Hatanaka	RCNP, Osaka University	Professor
J. Kamiya	RCNP, Osaka University	D3
K. Kawase	RCNP, Osaka University	M2
A.F. Lisetskiy	Institut für Kernphysik, Universität zu Köln, Germany	Lecturer
K. Nakanishi	RCNP, Osaka University	M2
N. Pietralla	Institut für Kernphysik, Universität zu Köln, Germany	Lecturer
N. Sakamoto	RCNP, Osaka University	M2
Y. Sakemi	RCNP, Osaka University	Associate Professor
Y. Shimbara	Department of Physics, Osaka University	D3
Y. Shimizu	RCNP, Osaka University	D1
T. Wakasa	RCNP, Osaka University	Res. Associate
M. Yosoi	Department of Physics, Kyoto University	Res. Associate

RUNNING TIME:

		1.5 days		
	itions	$0.5 \mathrm{~days}$		
		4 days		
	Mesuremente time for calibration targets			$0.5 \mathrm{~days}$
BEAM LINE:				Ring : WS course
BEAM REQUIREM	IENTS:	Type of particle		$^{3}\mathrm{He}$
		Beam energy		$420 { m MeV}$
		Beam intensity		$\sim 30~{\rm nA}$
		Energy resolution	$\Delta E \le 100$) keV (Achromatic
		mode), small emittanc	e	
BUDGET:	For the pr	eparation of targets		1.5 Millon yen

TITLE:

Detailed Study of Gamow-Teller Strengths in T=1 fp Shell Nuclei

SPOKESPERSON: Tatsuya Adachi

SUMMARY OF THE PROPOSAL

We propose to study the Gamow-Teller (GT) excitations in fp-shell nuclei ⁵⁴Co, ⁵⁰Mn, ⁴⁶V, and ⁴²Sc with the (³He, t) charge-exchange (CE) reactions on target nuclei ⁵⁴Fe, ⁵⁰Cr, ⁴⁶Ti, and ⁴²Ca, respectively. Target nuclei have ground-state (g.s) isospin T=1 and final nuclei have isospin T=0.

The low-lying excitation energy (E_x) region of these odd-odd N = Z nuclei are particularly interesting, since strong T = 0, GT excitations with $J^{\pi} = 1^+$ and a T = 1, Fermi excitation with $J^{\pi} = 0^+$ exist in the same region. It looks as if they form a quasideutron. Therefore, they are suited for the study of isovector (T = 1) and isoscalar (T=0) channels of the proton-neutron interaction.

A high-resolution (³He, t) experiment on T = 1 fp-shell nuclei was first performed on a ⁵⁸Ni target at RCNP by the present group. In the final nucleus ⁵⁸Cu, discrete GT states are identified up to high E_x region of about $E_x = 14$ MeV. The isospin value T of each state was identified in comparison with the results of a (p, p') experiment, and thus the GT strength distribution was obtained for T = 0, 1 and 2 states. How well these GT strength distributions and the fine structures can be determined has been one of the most active areas of experimental and theoretical structure studies. Therefore, studying GT transitions up to highly excited region for fp-shell nuclei itself is very important. In addition, these GT transitions are also of astrophysics interest.

For this study, a 140 MeV/nucleon ³He beam from the RCNP Ring Cyclotron will be used to excite the target nuclei. The out going tritons are momentum analyzed by the spectrometer Grand Raiden at 0°. In these experiments a high energy resolution of less than 40 keV is very important, which has been achieved only at RCNP for intermediate energy CE reactions. Also important is the good angle resolution of the scattering angle around 0° and the capability of reconstructing the angle. The ionoptical conditions *dispersion matching* and *angular dispersion matching* will be realized between the spectrometer and the the newly constructed WS beam line to achieve a high resolution and good angle resolution, respectively. The over-focus mode of the spectrometer is essential in realizing good angle resolution in vertical direction and also in correcting kinematic aberrations.

In the (³He, t) reaction at 140 MeV/nucleon, it has been established that there is a "specific" proportionality, i.e., a proportionality between the cross sections at 0° and the transition strengths B(GT) in one specific nucleus. Unfortunately there is not enough data to discuss "the universal" proportionality. In order to answer this question, we plan to study a few nuclei, like ³⁰Si, ⁴²Ca or ⁶²Ni, in which (³He, t) results can be directly calibrated with the β -decay results.