PROPOSAL FOR EXPERIMENT AT RCNP

27 January 2003

TITLE: Structure and decay of the *s*-hole state in ⁶He

SPOKESPERSON:

Full Name	Masaru YOSOI
Institution	Department of Physics, Kyoto University
Title or Position	Instructor
Address	Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502
Phone number	+81-75-753-3832
FAX number	+81-75-753-3887
E-mail	yosoi@ne.scphys.kyoto-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
Harutaka SAKAGUCHI	Dept. of Physics, Kyoto University	(AP)
Hiroyuki TAKEDA	Dept. of Physics, Kyoto University	(PD)
Makoto UCHIDA	Dept. of Physics, Kyoto University	(D 3)
Yusuke YASUDA	Dept. of Physics, Kyoto University	(D2)
Satoru TERASHIMA	Dept. of Physics, Kyoto University	(M2)
Satoshi KISHI	Dept. of Physics, Kyoto University	(M1)
Mamoru FUJIWARA	RCNP, Osaka University	(AP)
Masatoshi ITOH	RCNP, Osaka University	(PD)
Hidetomo P. YOSHIDA	RCNP, Osaka University	(JSPS Fellow)
Keigo HARA	RCNP, Osaka University	(D 3)
Kohsuke NAKANISHI	RCNP, Osaka University	(M2)
Keigo KAWASE	RCNP, Osaka University	(M2)
Tamio YAMAGATA	Dept. of Physics, Konan University	(\mathbf{P})
Hiroaki UTSUNOMIYA	Dept. of Physics, Konan University	(\mathbf{P})
Hidetoshi AKIMUNE	Dept. of Physics, Konan University	(AP)
Kaoru YAMASAKI-HAF	RA Dept. of Physics, Konan University	(D3)
Shintaro NAKAYAMA	Dept. of Physics, Univ. of Tokushima	(\mathbf{P})
Ken-ichi FUSHIMI	Dept. of Physics, Univ. of Tokushima	(AP)
Masayoshi TANAKA	Kobe Tokiwa Jr. College	(\mathbf{P})
Takahiro KAWABATA	CNS, Univ. of Tokyo	(A)
Hidenori TOYOKAWA	JASRI, SPring-8	(R)
RUNNING TIME: In	stallation time without beam	2 days
T	est running time for experiment	$0.5 \mathrm{~days}$
D	ata runs	6.0 days
BEAM LINE:		Ring : WS course
BEAM BEQUIREME	NTS: Type of particle	(polarized) p
	Beam energy	392 MeV
	Beam intensity	> 50 nA
	Other requirements energy re	solution $< 200 \text{ keV}$
	(halo_fre	e small emittance)
BUDGET. F	xperimental expenses	$300\ 000\ ven$
	ravel plans 16 participants should be su	pported by RCNP
1.	raver plans - to participants should be su	promed by RONE

TITLE: Structure and decay of the *s*-hole state in ⁶He

SPOKESPERSON: Masaru YOSOI

SUMMARY OF THE PROPOSAL

It is proposed to study the structure and fragmentation of the s-hole state in ⁶He via the quasifree ⁷Li(p, 2p) reaction at 392 MeV incident energy. Charged particles decaying from the s-hole state in ⁶He will be measured in coincidence with two emerging protons of the (p, 2p) reaction. The recoil momentum dependence of the cross sections of the p- and s-hole states in ⁶He will be also measured in order to investigate the reaction mechanism and to estimate the non-quasifree background around the excitation energy region of the s-hole state.

In the previous E110/E148 experiments, we measured the particle decays of the s-hole states in ¹¹B and ¹⁵N and triton-decay probabilities were found to be large compared to α -decay for both s-hole states despite their smaller Q-values than those of α -decay. This supports the selection rule for fragmentations of doorway s-hole states in light nuclei predicted by the microscopic SU(3)-cluster model. In the case of ⁶He, the mean free path of an s-hole is much larger than the nuclear radius and, therefore, the direct decay process is expected to be dominant, while the statistical decay was deduced to be more than half for the decay of the ¹⁵N(s-hole). Moreover, the threshold energy of t+t decay (12.3 MeV) is much larger than that of the $\alpha + 2n$ decay (0.97 MeV) in ⁶He. Thus, to study the partial fragmentation widths of the ⁶He(s-hole) is much interesting because the escape and spreading widths are expected to be clearly separated.

Since the ⁶He(s-hole) state is given as the $(s)^3(p)^3$ configuration according to the simple shell model, the special attention is paid to the t+t decay that is considered to be dominant by the selection rule due to the spatial SU(3) symmetry. On the other hand, in the recent measurement of the ⁶Li(⁷Li,⁷Be) reaction, a resonance with large binary triton decay was found at $E_x(^6\text{He})\approx 18\text{MeV}$, which suggests a di-triton cluster structure. It is, however, not clear if this resonance has the same origin as the s-hole state because the peak energy of the resonance is a few MeV higher than the central energy of the s-hole state. One of the main purposes of the present work is to elucidate the relevance between the di-triton cluster structure and the s-hole state in ⁶He.