PROPOSAL FOR EXPERIMENT AT RCNP

27 January 2003

TITLE: Agenda to E158: Study of Gamow-Teller transition strength by 37 Cl(3 He, t) 37 Ar

SPOKESPERSON:

SPOKESPERSON:		
Full Name	Yoshihiro Shimbara	
Institution	Department of Physics, Osaka University	
Title or Position	PhD student	
Address	Machikaneyama 1-1, Toyonaka, Osaka, Japan, 560-0043	
Phone number	+81-6-6850-5507	
FAX number	+81-6-6850-5516	
E-mail	shimbara@lns.sci.osaka-u.ac.jp	
Full Name	Yoshitaka Fujita	
Full Name Institution	Yoshitaka Fujita Department of Physics, Osaka University	
	0	
Institution	Department of Physics, Osaka University	
Institution Title or Position	Department of Physics, Osaka University Associate Professor	
Institution Title or Position Address	Department of Physics, Osaka University Associate Professor Machikaneyama 1-1, Toyonaka, Osaka, Japan, 560-0043	
Institution Title or Position Address Phone number	Department of Physics, Osaka University Associate Professor Machikaneyama 1-1, Toyonaka, Osaka, Japan, 560-0043 +81-6-6850-5506	

EXPERIMENTAL GROUP:

Full Name In	stitution	Title or Position
Tatsuya Adachi De	ept. of Physics, Osaka University	D1
G.P.A. Berg K	VI	Professor
Hirohiko Fujita R	CNP, Osaka University	Researcher
Kunihiro Fujita R	CNP, Osaka University	M2
Kichiji Hatanaka R	CNP, Osaka University	Professor
Keigo Kawase R	CNP, Osaka University	M2
Kousuke Nakanishi R	CNP, Osaka University	M2
Yasuhiro Sakemi R	CNP, Osaka University	Associate Professor
Youhei Shimizu R	CNP, Osaka University	D1
Yuji Tameshige R	CNP, Osaka University	M1
Tomotsugu Wakasa R	CNP, Osaka University	Research Associate
Masaru Yosoi De	ept. of Physics, Kyoto University	Research Associate
RUNNING TIME:	Installation time without beam	1 days Beam tuning time 1.5
	days	
	Set up time of the matching con	nditions 0.5 days
	Data runs	$2.5 \mathrm{~days}$
BEAM LINE:		Ring : WS course
BEAM REQUIREMENTS: Type of particle ³ He		
·	Beam energy	$420 { m MeV}$
	Beam intensity	10-30 nA
	U U	$E \leq 100 \text{ keV}$, small emittance
BUDGET:		
	Production costs for the new Fa	araday cups 80,000 yen

TITLE: Agenda to E158: Study of Gamow-Teller transition strength by 37 Cl $({}^{3}$ He, t) 37 Ar

SPOKESPERSON: Yoshihiro Shimbara, Yoshitaka Fujita

SUMMARY OF THE PROPOSAL

We propose to measure the ${}^{37}\text{Cl}({}^{3}\text{He},t){}^{37}\text{Ar}$ and ${}^{35}\text{Cl}({}^{3}\text{He},t){}^{35}\text{Ar}$ reactions at $0-6^{\circ}$ as an extension of the E158 experiment. This experiment will give realistic Gamow-Teller (GT) strengths B(GT) for the ${}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}$ and ${}^{35}\text{Cl} \rightarrow {}^{35}\text{Ar}$ transitions. The results will give an important calibration standard for the study of solar neutrino using ${}^{37}\text{Cl}$ detector.

Under the assumption of isospin symmetry, the B(GT) of ${}^{37}Cl \rightarrow {}^{37}Ar$ and ${}^{37}Ca \rightarrow$ 37 K transitions should be the same. However, the B(GT) distributions empirically determined in the ${}^{37}\text{Cl}(p,n){}^{37}\text{Ar}$ and ${}^{37}\text{Ca}\ \beta$ decay measurements are not consistent. Although, in charge exchange reactions, the proportionality between B(GT) and cross section is used for the empirical extraction of B(GT) values, it has been discussed that the proportionality is broken for the $j_{\leq}j_{\leq}$ transitions. This is exactly the case of GT strengths in ${}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}$ and ${}^{35}\text{Cl} \rightarrow {}^{35}\text{Ar}$ transitions. A DWBA calculation for the 37 Cl(3 He, t) 37 Ar reaction was performed. Two states with different configurations of $(\pi d_{3/2}, \nu d_{3/2}^{-1})$ and $(\pi d_{3/2}, \nu d_{5/2}^{-1})$ were assumed. The calculated angular distributions for these transitions were different. By using this difference of angular distributions, we can classify the GT states and evaluate more accurate the B(GT) values with different unit cross sections. In E158 experiment at RCNP we measured the ${}^{37}Cl({}^{3}He,t){}^{37}Ar$ and ${}^{35}\text{Cl}({}^{3}\text{He},t){}^{35}\text{Ar}$ reactions at 0° and 4°. Among the same $\Delta J^{\pi} = 1^{+}$ states some significant differences of the angular distributions were observed for the states below $E_x = 5$ MeV. Unfortunately, we have data only at 0° and 4°. Our aim of this proposal is to extend the measurements to other scattering angles in order to roughly distinguish the configurations of GT states. This experiment will give more realistic B(GT) values of the ${}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}$ and ${}^{35}\text{Cl} \rightarrow {}^{35}\text{Ar}$ transitions. In addition, it makes the charge exchange reaction more reliable as a tool to search for the Gamow-Teller transition strengths.

For this study, a 140 MeV/nucleon ³He beam from the RCNP Ring Cyclotron will be used to excite the target nucleus. The outgoing tritons are momentum analyzed by the spectrometer Grand Raiden at $0 - 6^{\circ}$. In this experiments a high energy resolution of the order of 30 keV is very important. Therefore a chlorine gas target is not suited. In order to achieve a high resolution by using a magnetic spectrometer, a newly developed thin film made by calcium chloride (CaCl₂) and polyvinylalcohol (PVA) will be used as targets. In order to improve the energy spread of the beam, the dispersion matching method will be used. The ion-optical conditions *dispersion matching* and *angular dispersion matching* will be realized between the spectrometer and the WS beam line to achieve a high resolution and good angle resolution, respectively. The over-focus mode of the spectrometer is essential in realizing good angle resolution in vertical direction and also in correcting kinematic aberrations.