RCNP EXPERIMENT E210

PROPOSAL FOR EXPERIMENT AT RCNP

27/01/2003

TITLE:

Study of the GT strength distributions via 60,62,64 Ni $({}^{3}\text{He},t)$

SPOKESPERSON(S):

Denis De Frenne				
Department of Subatomic and Radiation Physics, Gent University				
Professor				
Proeftuinstraat 86, B-9000 Gent, Belgium				
Phone number : $+32-9-264-6535$				
FAX number : $+32-9-264-6697$				
E-mail : denis.defrenne@rug.ac.be				
Yoshitaka Fujita				
Department of Physics, Osaka University				
Associate Professor				
Machikaneyama 1-1, Toyonaka, Osaka, 560-0043				
Phone number : $+81-6-6850-5506$				
FAX number : $+81-6-6850-5516$				
E-mail : fujita@rcnp.osaka-u.ac.jp				

EXPERIMENTAL GROUP:

Name	Institution	Position
L. Popescu	Dep. of Subat. and Rad. Phys., Gent Univ.	PhD
T. Adachi	Dept. of Phys., Osaka Univ.	D1
C Bäumer	IKP Münster	PhD
A.M. van den Berg	KVI, Groningen	Senior Researcher
D. Frekers	IKP Münster	Professor
H. Fujita	RCNP, Osaka Univ.	Researcher
K. Fujita	RCNP, Osaka Univ.	M1
K. Hatanaka	RCNP, Osaka Univ.	Professor
E. Jacobs	Dep. of Subat. and Rad. Phys., Gent Univ.	Professor
K. Kawase	RCNP, Osaka Univ.	M2
K. Nakanishi	RCNP, Osaka Univ.	M2
A. Negret	Dep. of Subat. and Rad. Phys., Gent Univ.	PhD
S. Rakers	IKP Münster	Post doc

Y. Sakemi	RCNP, Osaka Univ.	Associate Professor
Y. Shimbara	Dept. of Phys., Osaka Univ.	D3
Y. Shimizu	RCNP, Osaka Univ.	D1
Y. Tameshige	RCNP, Osaka Univ.	M1
T. Wakasa	RCNP, Osaka Univ.	Assistant Professor
H.J. Wörtche	KVI, Groningen	Senior Researcher
M. Yosoi	Dept. of Phys., Kyoto Univ.	Assistant Professor

RUNNING TIME:

Beam tuning time	$1.5 \mathrm{~days}$
Set up time of the matching conditions	$0.5 \mathrm{~days}$
Data runs	$3.0 \mathrm{~days}$
Mesurement time for calibration targets	$0.5 \mathrm{~days}$

BEAM LINE: WS (WS beam line + Grand Raiden)

BEAM REQUIREMENTS: Type of particle ³H

BUDGET:

Support to the two PhD students from Gent (for their stay of about a month for data analysis).

SCHEDULE: We request the beam time late in the fall, 2003.

SUMMARY OF THE PROPOSAL

We propose to study the Gamow-Teller (GT) excitations in fp-shell nuclei 60 Cu, 62 Cu, 64 Cu with the (3 He, t) charge-exchange (CE) reactions on target nuclei 60 Ni, 62 Ni, 64 Ni, respectively. The target nuclei have ground-state (g.s) isospins T=2, T=3, T=4 and final nuclei have isospin T=1, T=2, T=3.

For this study, a 140 MeV/nucleon 3 He beam from the RCNP Ring Cyclotron will be used. The outgoing tritons are momentum analyzed by

the spectrometer Grand Raiden at 0° . In these experiments a high energy resolution of less than 40 keV is very important. This has been achieved only at RCNP for intermediate energy CE reactions. Also important is the good angle resolution of the scattering angle around 0° and the capability of reconstructing the angle. The ion-optical conditions *dispersion matching* and *angular dispersion matching* will be realized between the spectrometer and the newly constructed WS beam line to achieve a high resolution and good angle resolution. The over-focus mode of the spectrometer is essential in realizing good angle resolution in vertical direction and also in correcting kinematic aberrations.

The first important goal of this proposal is to obtain via the 60,62,64 Ni(3 He, t) reaction the accurate GT⁻ strength distributions to discrete levels and the continuum up to about 20 MeV in 60,62,64 Cu. The excellent energy resolution with the Grand Raiden Spectrometer system at RCNP should make possible the identification of individual levels up to high excitation energies. We think that our experimental results will permit a level to level comparison with the theoretical calculations of Caurier et al.

The second goal of the proposal is to identify the $T_0 - 1$, T_0 and T_0+1 isospin components by combining the information on B(GT) distributions from complementary (p, n)-type, (n, p)-type and inelastic reactions. Also the behavior of the coupling energy between the isospin T_0 of the ground state and the isospin of the vibration τ as given by Bohr and Mottelson will be checked.

In the (³He, t) reaction at 140 MeV/nucleon, it has been established that there is a "specific" proportionality, i.e., a proportionality between the cross sections at 0° and the transition strengths B(GT) in one specific nucleus. Unfortunately there is not enough data to discuss "the universal" proportionality. In order to answer this question, the study of ^{62,64}Ni(³He, t) reactions play important roles. The calibration standards of B(GT) values for these reactions are obtained from the ⁶²Cu and ⁶⁴Cu β -decays, respectively.

The spectrometer Grand Raiden and the standard VDC focal plane detector system will be used for the analysis and detection of outgoing tritons. We request $\approx 10 - 30$ nA of good quality single-turn extracted 140 MeV/nucleon ³He beam. In order to realize various matching conditions, various capabilities of the WS course will be fully utilized. More information on *matching conditions* including *dispersion matching*, *angular dispersion matching* and *focus matching* will also be accumulated through the experiences in the experiments. Studies are performed to further improve the resolutions.