PROPOSAL OF EXPERIMENT AT RCNP

Jan. 25, 2004

TITLE:

Low-energy proton production cross sections of 392-MeV proton induced reactions as nuclear data

SPOKESPERSONS:

Yusuke UOZUMI, Department of Nuclear Engineering, Kyushu University, Fukuoka 812-8581; e-mail: uozumi@nucl.kyushu-u.ac.jp

EXPERIMENTAL GROUP:

Masaru MATOBA, Professor, Kyushu University
Nobuo IKEDA, Associate Professor, Kyushu University
Genichiro WAKABAYASHI, Res. Associate, Kyushu University
Tadahiro KIN, M2, Kyushu University
Shinya HOHARA, M2, Kyushu University
Daisuke MAKI, M1, Kyushu University
Yusuke YAMASHITA, B4, Kyushu University
Minoru IMAMURA, B4, Kyushu University
Norihiko KOORI, Professor, University of Tokushima
Masahiro NAKANO, Asspcoate Professor, UOEH
Samoilov VALENTIN, Professor, JINR Dubna

RUNNING TIME: Beam preparation and beam tuning 1.0 days

David MZAVIA, Professor, JINR Dubna

Data runs 2.0 days Total 3.0 days

BEAM LINE: ES course

BEAM REQUIREMENTS: Type of particle p

Beam energy 392 MeV Beam intensity 1 nA

EXPERIMENTAL EXPENSES: None

TITLE:

Low-energy proton production cross sections of 392-MeV proton induced reactions as nuclear data

SPOKESPERSONS: Yusuke UOZUMI

SUMMARY OF THE PROPOSAL

We propose measurements of double-differential cross sections for the production of low-energy protons below 50 MeV from proton-induced reactions on 12 C, 51 V, 93 Nb, 181 Ta and 208 Pb to develop nuclear data libraries. In our previous works, proton spectra ranging from 50 to 400 MeV were measured for 300- and 392-MeV proton reactions on ten target nuclei, from 9 Be to 209 Bi in the periodic table. The data have been utilized to facilitate a testing and improvement of nuclear model calculations. As a result, it was demonstrated that the quantum molecular dynamics (QMD) gives satisfactory accounts for spectra from lighter nuclei. However, QMD predictions are in poor agreements with lower-energy part of spectra for the heavier nuclei. The statistical decay model predictions for threshold energy range are also controversial.

In this proposed research, we will conduct measurements of proton spectra ranging from 50 MeV down to the threshold energy with the above five target nuclei by the use of a 392-MeV proton beam. The low-energy data are important for estimation of doses and material damage due to the hydrogen brittleness.