PROPOSAL FOR EXPERIMENT AT RCNP

20 January 2005

TITLE:

Measurements of Intermediate Energy Neutron Transport through the Low Activation Concrete and Tissue Equivalent Material

SPOKESPERSON:

Shingo TANIGUCHI Full Name

Beamline division, Japan Synchrotron Radiation Research Institure Institution

Title or Position Researcher

Address Koto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198

Phone number +81-791-58-2723FAX number +81-791-58-0830 E-mail shingo@spring8.or.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
Shingo TANIGUCHI	Japan Synchrotron Radiation Research Institute	(Researcher)
Noriaki NAKAO	Stanford Linear Accelerator Center	(Researcher)
Takashi NAKAMURA	Cyclotron and Radioisotope Center, Tohoku Univ.	(Professor Emeritus)
Yoshihiro NAKANE	Japan Atomic Energy Research Institute (JAERI)	(Senior Researcher)
Yosuke IWAMOTO	Japan Atomic Energy Research Institute (JAERI)	(Researcher)
Hiroshi NAKASHIMA	Japan Atomic Energy Research Institute (JAERI)	(Manager)
Daiki SATOH	Japan Atomic Energy Research Institute (JAERI)	(Researcher)
Mamoru BABA	Cyclotron and Radioisotope Center, Tohoku Univ.	(P)
Toshihiro ITOGA	Cyclotron and Radioisotope Center, Tohoku Univ.	(D1)
Koji OISHI	Shimizu corporation	(Senior Research Engineer)
Hiroshi YAMAKAWA	Shimizu corporation	(Research Engineer)
Hiroshi YASHIMA	Research Reactor Institute, Kyoto University	(A)
Yoshitomo UWAMINO	Institute of Physical and Chemical Research	(Manager, Safety Center)
Sayed H. Rokni	Stanford Linear Accelerator Center	(Department Head)
Kichiji HATANAKA	Research Center for Nuclear Physics, Osaka Univ.	(P)
Takane SAITO	Research Center for Nuclear Physics, Osaka Univ.	(AP)
Atsushi TAMII	Research Center for Nuclear Physics, Osaka Univ.	(AP)

RUNNING TIME: Installation time without beam 1 days(for each beam time)

> Data runs $2 \text{ days} \times 3 \text{ times} = 6 \text{ days}$

BEAM LINE: Ring: N0 course

BEAM REQUIREMENTS: Type of particle

> Beam energy 150, 250, 350 MeV Beam intensity < 200 nA

Any other requirements

BUDGET: Traveling expenses 600,000 yen

TITLE:

Measurements of Intermediate Energy Neutron Transport through Low Activation Concrete and Tissue Equivalent Material

SPOKESPERSON: Shingo TANIGUCHI

SUMMARY OF THE PROPOSAL

This proposal has a plan to measure the intermediate energy neutron transport in low activation concrete which has been recently used in high intensity accelerator facility and tissue equivalent material with quasi-monoenergetic neutron sources produced by p-Li reactions using 150, 250 and 350 MeV protons. This proposal is the further extension of the presently proceeding experiment of neutron transport through ordinary concrete and iron shields(E229).

In order to estimate shielding characteristics of the low activation concrete, neutron spectra just behind the low activation concrete shield will be measured with an NE213 scintillator and a multi-moderator detector by using an unfolding method coupled with the response matrix. The neutron attenuation data obtained in this concrete is essentially important to investigate the shielding ability, compared with that of the ordinary concrete. Neutron dose distribution measurements in a tissue equivalent material will be measured with a Tissue Equivalent Proportional Counter(TEPC), which is also very important to validate the dose evaluation methods for human body used for the shielding design of high-energy radiation fields such as accelerator facilities. Both measurements will be good benchmark data of neutron transport through matter for investigating the accuracy of various simulation calculation codes.

It will take 2 days for each proton energy to obtain a complete data set of neutron spectra behind the various thicknesses of the concrete shield and tissue equivalent material. The total requirement of the beam time is 6 days for three proton energies.