PROPOSAL FOR EXPERIMENT AT RCNP

21 July 2005

TITLE:

Study of High-Spin Isomer in ¹⁵¹Er using Ar Beam SPOKESPERSON:

	Full Name	Atsuko Odahara		
	Institution	Nishinippon Institute of Technology		
	Title or Position	Associate Professor		
	Address	Aratsu 1-11, Kanda-tyou, Miyako-gun, Fukuoka-ken, 800-0394, Japan		
	Phone number	+81 - 930 - 23 - 1491		
	FAX number	+81-930-24-7900		
	E-mail	odahara@nishitech.ac.jp		

EXPERIMENTAL GROUP:

Full Name	Institution		Title or Position		
Tomonori Fukuchi	Dep. of Phys	ics, Rikkyo Univ.	Post Doctoral Fellow		
Yasuo Wakabayashi	Dep. of Phys	ics, Kyushu Univ.	D3		
	CNS, Univ. o	of Tokyo			
Tadashi Shimoda	Dep. of Phys	ics, Osaka Univ.	Professor		
Takeshi Furukawa	Dep. of Phys	ics, Osaka Univ.	D3		
Yosuke Akasaka	Dep. of Phys	ics, Osaka Univ.	M2		
Akihiko Sato	Dep. of Phys	ics, Osaka Univ.	M1		
RUNNING TIME: Installation time without beam 7 days (for each beam time)					
	Test runni	ment 1 day			
	Data runs		5 days		
BEAM LINE:			AVF : EN course		
BEAM REQUIRE	MENTS:	Type of particle	$^{40}\mathrm{Ar}$		
·		Beam energy	$195 { m MeV} (4.9 { m MeV/u})$		
		Beam intensity	8 pnÅ		
BUDGET:	Experimer	ntal expenses	4,880,000 yen		

TITLE: Study of High-Spin Isomer in ¹⁵¹Er using Ar Beam

SPOKESPERSON: Atsuko Odahara

SUMMARY OF THE PROPOSAL

We propose the experiment to determine the spin-parity of high-spin isomer in ¹⁵¹Er by using the γ -ray angular correlation and the γ -ray linear polarization. This experiment will be carried out at EN course by using the primary Ar beam which will be directly provided by the upgraded AVF cyclotron and ECR ion source.

High-spin isomers were systematically studied in N = 83 isotones. Life times of these isomers range between ~10 ns and ~ μ s. These isomers are of stretch coupled configurations and oblate shapes. They can be categorized to be high-spin shape isomers, as they are caused by the sudden shape change from near spherical to an oblate shape. Their spins and parities are $49/2^+$ and 27^+ for odd and odd-odd nuclei, respectively, in N = 83 isotones with $60 \le Z \le 66$.

However, spin-parity of the high-spin isomer in an N = 83 isotone ¹⁵¹Er with Z = 68 was reported to be $67/2^-$ by Grenoble group. This spin-parity could not be reproduced by a deformed independent particle model, which explains well the isomerism of high-spin isomers in other N = 83 isotones. This model predicts that the spin-parity of the isomer would be $49/2^+$ or $61/2^+$. If the spin-parity of the high-spin isomer of ¹⁵¹Er is really $67/2^-$, it requires to find a new mechanism to produce the isomer.

Grenoble group determined this spin-parity based on the results of γ -ray angular distributions and conversion electrons. However, they have some contradictions between both results for λ of transitions and some ambiguity of determination of E3 transitions directly deexciting the high-spin isomer.

In order to study the isomerism of 151 Er, we intend to determine the spin-parity of high-spin isomer by measuring the γ -ray linear polarizations as well as γ -ray angular correlations. These quantities depend also on the initial and final state spins of transitions.

High-spin states of ¹⁵¹Er will be populated by the reaction of ¹¹⁶Sn(⁴⁰Ar,5n). The energy of ⁴⁰Ar beam is requested to be 195 MeV with intensity of 8 pnA. In this case, the angular momentum brought into the ¹⁵⁶Er compound nucleus was estimated to be 69 \hbar . Gamma-rays will be detected by 4 high purity germanium detectors.

We request 1 day test run for the preparation of circuits and DAQ systems and 5 days data runs.