PROPOSAL FOR EXPERIMENT AT RCNP

 $10 \ {\rm Oct} \ 2005$

 ≤ 0.1 fA

 $\leq 1~{\rm MeV}$

TITLE:

Charged Particle Response of a Prototype Detector Array for the PoGO Astronomical Hard X-ray Polarimeter

SPOKESPERSON:

Jun Kataoka
Department of Physics, Faculty of Science, Tokyo Institute of Technology
Research Associate (RA)
2-12-1, Ohokayama, Meguro, Tokyo 152-8551
+81 - 3 - 5734 - 2388
+81 - 3 - 5734 - 2388
kataoka@hp.phys.titech.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution		Title or Position		
Y. Kanai	Dep. of Phys, Tokyo	Tech	(M1)		
M. Arimoto	Dep. of Phys, Tokyo	Tech	(M2)		
M. Ueno	Dep. of Phys, Tokyo	Tech	(PD)		
N. Kawai	Dep. of Phys, Tokyo	Tech	(Prof.)		
T. Shima	RCNP, Osaka Univer	rsity	(RA)		
T. Mizuno	HEA, Hirohima Univ	versity	(RA)		
T. Kamae	Stanford Linear Acce	elerator Center	(Prof.)		
H. Tajima	Stanford Linear Acce	elerator Center	(Research Scientist)		
T. Ylinen	Royal Inst. of Tech,	Sweden	(Graduate Student)		
M. B. Kiss	Royal Inst. of Tech,	Sweden	(Graduate Student)		
RUNNING	TIME: Instrumer	nt Setup	3-4	days	
	Data Run	IS	2	days	
Cleaning Away			1-2	days	
BEAM LINE: Bing : EN course East Boom					
BEAM BEOLIBEMENTS		Type of parti	cle Pro	oton	
		Ream energy	200-400	MeV	
		Domin Chiefy	200 100 1		

BUDGET:	Experimental expenses	0 yen
	Travel plans - 10 participants should be supported b	by RCNP

Beam intensity

Energy resolution

TITLE: Charged Particle Response of a Prototype Detector Array for the PoGO Astronomical Hard X-ray Polarimeter

SPOKESPERSON: Jun Kataoka

SUMMARY OF THE PROPOSAL

The polarized Gamma-ray Observer (PoGO) is a new balloon-borne instrument designed to measure polarization from astrophysical object in 30-200 keV range. It is under development for the first flight in September 2008. The current design of PoGO consists of 217 phoswich units yielding a geometrical area of 930 $\rm cm^2$, which promises to detect < 10 % polarization from 100mCrab sources in a 6 hr balloon observation. In the balloon experiment, however, charged particle background (mainly protons) is often a serious problem. Expected rate would be $\geq 100 \text{ cts/s/unit}$, which is two orders of magnitude larger than signals from the astronomical sources. Energy deposited by each charged particle typically amounts to 100 MeV, and such a large signal would make a long tail in the output of PMT signal, resulting in a significant dead-time. In order to simulate a realistic condition in balloon orbit and demonstrate the background rejection scheme, we will take weak gamma-ray signals (59.5 keV from ²⁴¹Am) collimated on the fast plastic scintillator, under constant illumination of 200-400 MeV protons (100-1000 cts/s) coming from various incident angles. Intensity of the proton beam is monitored by a small plastic scintillator placed in front of the PoGO phoswich unit. By comparing the data obtained when the beam is ON and OFF, we can investigate the possible effects caused by the charged particles in detail.