PROPOSAL FOR EXPERIMENT AT RCNP

12 July 2007

TITLE:

Search for $\alpha\text{-condensed}$ state in $^{24}\mathrm{Mg}$

SPOKESPERSON:

Kawabata Takahiro
Center for Nuclear Study (CNS), Graduate School of Science,
University of Tokyo
Research Associate
2-1 Hirosawa, Wako, Saitama 351-0198
+81-48-464-4156
+81-48-464-4554
kawabata@cns.s.u-tokyo.ac.jp

EXPERIMENTAL GROUP:

Full Name	Full Name Institution Title or Pos			
T. Uesaka	Center for Nu	AP		
Y. Shimizu	Center for Nu	PD		
S. Sakaguchi	Center for Nu	D2		
Y. Sasamoto	Center for Nu	D2		
K. Itoh	Department o	D3		
K. Hatanaka	RCNP, Osaka	Р		
M. Fujiwara	RCNP, Osaka	AP		
A. Tamii	RCNP, Osaka	AP		
K. Suda	RCNP, Osaka	PD		
H. Hashimoto	RCNP, Osaka	D3		
Y. Tameshige	RCNP, Osaka	D3		
H. Matsubara	RCNP, Osaka	D2		
M. Itoh	Cyclotron and	RA		
M. Uchida	Department of Physics, Tokyo Institute of Technology RA			
Y. Maeda	Department o	$\mathbf{R}\mathbf{A}$		
S. Terashima	RIKEN (The	PD		
N. Itagaki	Department o	AP		
M. Ito	RIKEN (The	Institute of Physical and Chemical Research)	PD	
RUNNING T	'IME: Instal	lation time without beam	$3.0 \mathrm{~days}$	
	Setup	and beam tuning time	$2.0 \mathrm{~days}$	
	Data	runs	4.0 days	
BEAM LINE: Ring : WS course				
BEAM REQUIREMENTS: Type of particle			$^{4}\mathrm{He}^{++}$	
·		Beam energy	$400 { m MeV}$	
		Beam intensity	$\leq 10 \text{ pnA}$	
		Energy resolution	< 50 keV	
		Dispersive beam transport, halo-free		
		tance		
BUDGET:	Expe	rimental expenses	2,500,000 yen	
	Trave	l plans - 10 participants should be support	ed by RCNP	
			-	

TITLE: Search for α -condensed state in ²⁴Mg

SPOKESPERSON: Kawabata Takahiro

SUMMARY OF THE PROPOSAL

Alpha particle clustering is an important phenomenon in nuclear physics for light nuclei. On the basis of the Ikeda diagram, the α cluster structure is expected to emerge near the α -decay threshold energy. For example, it was suggested that the 7.65-MeV 0_2^+ state in ¹²C, which locates at an excitation energy higher than the 3α -decay threshold by 0.39 MeV, has an 3α cluster structure. Recently, it was proposed that this 0_2^+ state is theoretically described by introducing a novel concept of the nuclear structure, i.e., this state is an α -condensed state where three α particles are weakly interacting and are condensed into the lowest s-orbit. The next natural question addressed is whether such an α -condensed state exists in the heavier self-conjugate N = 4n nuclei or not.

Based on a microscopic α -cluster model, N. Itagaki *et al.* demonstrated a possible answer to the question that an α -condensed state around a strongly bound core of ¹⁶O may appear near the $2\alpha + {}^{16}$ O decay threshold energy in 24 Mg.

We propose to search for the α -condensed state in ²⁴Mg by a high-resolution measurement of the inelastic alpha scattering at forward angles including 0°. To achieve the highest energy resolution, the dispersion matching technique should be used. In addition, the decaying particles from the excited states should be measured, since the decay branches from the excited states are expected to provide an insight into the cluster structure.