PROPOSAL FOR EXPERIMENT AT RCNP

TITLE:

Study of spin dipole strengths in ¹²N and ¹⁶F via complete polarization transfer measurements

SPOKESPERSON:

Tomotsugu WAKASA, Associate Professor, Department of Physics, Kyushu University, Hakozaki 6-10-1, Higashi, Fukuoka 812-8581, Japan Phone number : +81-92-642-2543FAX number : +81-92-642-2553 E-mail : wakasa@phys.kyushu-u.ac.jp

EXPERIMENTAL GROUP:

<u>M. Dozono</u>	Kyushu Univ.	D	T. Noro	Kyushu Univ.	Р
Y. Yamada	Kyushu Univ.	D	T. Imamura	Kyushu Univ.	Μ
K. Sagara	Kyushu Univ.	Р	S. Kuroita	Kyushu Univ.	Μ
H. Shimoda	Kyushu Univ.	Μ	T. Sueta	Kyushu Univ.	Μ
K. Hatanaka	RCNP	Р	H. Okamura	RCNP	Р
A. Tamii	RCNP	AP	Y. Tameshige	RCNP	D
H. Matsubara	RCNP	D	D. Ishikawa	RCNP	D
K. Suda	RCNP	R	Y. Sakemi	CYRIC	Р
T. Nagano	CYRIC	Μ			

RUNNING TIME:

NING TIME:	
Beam tuning for N, S , and L -type beams	$1.5 \mathrm{~days}$
Calibration of NPOL3	$1.5 \mathrm{~days}$
Measurement of σ and A_y	$1.5 \mathrm{~days}$
Measurement of D_{ij}	12.0 days
Total	$16.5 \mathrm{~days}$

BEAM LINE: N0 (N0 + NPOL3)

BEAM REQUIREMENTS:

Type of particle	Polarized Protons
Beam energy	$\simeq 300 \text{ MeV}$
Beam intensity	> 500 nA on target before pulse selection
Time resolution	< 300 ps (FWHM)
Beam polarization	> 0.6
Injection Mode	High Current Mode
Pulse selection	1/5 or 1/1

BUDGET:

Summary of budget request	4,700,000
Experimental expenses	3,900,000
Travel plan	800,000

13/02/2008

TITLE: Study of spin dipole strengths in 12 N and 16 F via complete polarization transfer measurements

SPOKESPERSON: Tomotsugu WAKASA

RCNP EXPERIMENT E317

SUMMARY OF THE PROPOSAL

We have recently observed a missing spin-dipole (SD) 0⁻ state in ¹²N via the ¹²C(\vec{p}, \vec{n}) reaction at T_p =296 MeV and $\theta_{\rm lab}$ =0°. In the shell-model (SM) calculations, two major 0⁻ states are predicted in ¹²N, and the observed state corresponds to the lower one. Thus there is still a missing 0⁻ state in the higher continuum region. Furthermore, our data have confirmed that the SD resonance at $E_x \simeq 7$ MeV consists mainly of the 2⁻ component, which was suggested by the ¹²C($\vec{d}, ^2$ He)¹²B and ¹²C(¹²C, ¹²N)¹²B experiments. Because the SD state at $E_x \simeq 4$ MeV is also 2⁻, this 2⁻ dominance at $E_x \lesssim 7$ MeV has aroused the problem of the missing 1⁻ strength. The missing 1⁻ strength is also expected to be in the higher continuum region.

The 0⁻ strength in ¹⁶F is also missing by comparing with the SM calculations and the sum rule value. The evidence of the missing 0⁻ state predicted by the SM calculations was suggested by the ¹⁶O(\vec{p}, \vec{n})¹⁶F reaction at T_p =135 MeV, however, it is not settled. It should be noted that the SD excitations in ¹⁶O have been discussed recently in relation with the neutrino detection from supernova with the Superkamiokande water Cherenkov detector. Thus the quantitative information on the distribution of the SD strengths in ¹⁶F is very important.

Thus, in order to identify missing SD strengths in the continuum region, we propose to measure the cross sections and complete sets polarization transfer observables for ${}^{12}C(\vec{p},\vec{n}){}^{12}N$ and ${}^{16}O(\vec{p},\vec{n}){}^{16}F$ reactions. The measured polarization transfer observables are used to separate the cross sections into spin-longitudinal ID_q and spin-transverse ID_p polarized cross sections. These polarized cross sections enable us to separate the L = 1 SD cross section in the continuum into the 0^- , 1^- , and 2^- components. The deduced strength distributions and their sums will be compared with the SM calculations and the sum rule values in order to investigate the tensor correlation effects in nuclei.