PROPOSAL FOR EXPERIMENT AT RCNP

September 16, 2009

TITLE:

BUDGET:

Additional Measurements for E252: High Resolution Study of Isospin mixing in Fermi Excitation via 56 Fe(3 He,t) Reaction at 100MeV/nucleon

SPOKESPERSON:

Full Name	Hirohiko Fujita
Institution	Research Center for Nuclear Physics, Osaka University
Title or Position	Collaborative Researcher
Phone number	$06 \ 6879 \ 8916$
E-mail	hfujita@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution		Title or Position			
Y. Fujita	Osaka University		Associate Professor			
G.P.A. Berg	University of Not	re Dame, USA	Senior Resear	Senior Researcher		
T. Adachi	KVI, Netherlands	3	Researcher	Researcher		
R.W. Fearick	University of Cap	e Town, South Africa	Researcher	Researcher		
J. Carter	University of the	Witwatersrand, South Afric	ca Professor	Professor		
K. Hatanaka	RCNP, Osaka Un	iversity	Professor			
H.J. Ong	RCNP, Osaka Un	iversity	Assistant Professor			
R. Neveling	iThemba LABS, South Africa Researcher					
Y. Shimbara	Niigata University	Researcher				
F.D. Smit	iThemba LABS, S	iThemba LABS, South Africa				
G. Süsoi	Istanbul Universit	Istanbul University				
T. Suzuki	RCNP, Osaka Un	RCNP, Osaka University				
A. Tamii	RCNP, Osaka University		Associate Pro	fessor		
J. Thies	Muenster University		Ph.D. Studen	t		
M. Yosoi	RCNP, Osaka Un	Osaka University Associate Professor		fessor		
RUNNING TI	ME: Beam tun	ing for the dispersion mat	ching	$1.5 \mathrm{day}$		
	+ Data ta	king time including calibr	ation run	$0.5 \mathrm{day}$		
BEAM LINE:			Ring : V	VS course		
BEAM REQUIREMENTS:		Type of particle		$^{3}\mathrm{He}$		
		Beam energy		$300 { m MeV}$		
		Beam intensity		≤ 20 nA		
		Other requirements	energy spread \leq	$\leq 100 \text{ keV}$		
		-	halo-free, small	emittance		

No special budget is required.

TITLE:

Additional Measurements for E252: High Resolution Study of Isospin mixing in Fermi Excitation via 56 Fe(3 He,t) Reaction at 100MeV/nucleon

SPOKESPERSON: H. Fujita

SUMMARY OF THE PROPOSAL

As an additional study of E252, we propose a high resolution measurement of the 56 Fe(3 He,t) 56 Co reaction at 100 MeV/nucleon. In the E252 beam time, the 56 Fe(3 He,t) reaction was measured at 140 MeV/nucleon using the Grand Raiden spectrometer to study isospin mixing between the isobaric analog state (IAS, mainly T = 2) and the neighboring 0⁺ state (mainly T = 1). With a dispersively transported 3 He beam, an energy resolution of 19 keV (FWHM) was realized. Owing to the high resolution, three peaks were clearly separated from the IAS at 3.60 MeV. We tried to identify the T = 1 0⁺ state from their angular distributions, however, they have similar shapes for all these states and the IAS. Although J^{π} values of these states could not be determined, the $\Delta L = 0$ character was confirmed from the 0° dominated shapes of the angular distributions.

Since the strength of the Fermi and Gamow-Teller interactions are different at different energies, we propose to measure the same reaction at 0° at the lower energy of 100 MeV/nucleon. This will allow to distinguish the 0⁺ and 1⁺ transitions. At 100 MeV/nucleon it is expected that Fermi strength is about 40 % stronger compared to the strength measured previously at 140 MeV/nucleon. Although an even larger difference is expected at lower energy, we choose 100 MeV/nucleon in order to avoid multi-step reaction effects. We also plan to take data for the ⁵⁴Fe and ⁵⁸Ni targets for calibration purposes.

The Grand Raiden spectrometer and the standard VDC focal plane detector system will be used for the magnetic analysis and the detection of the outgoing tritons. This experiment requires a good quality single-turn extracted 100 MeV/nucleon ³He beam of up to 40 nA. Complete matching conditions and over-focus mode will be applied to realize an energy resolution comparable to the 19 keV obtained in E252.