PROPOSAL FOR EXPERIMENT AT RCNP

September 16, 2009

TITLE:

Test Experiment: $({}^{3}\text{He}, {}^{3}\text{He'})$ Reaction at 175 MeV/nucleon - for the precise study of E1 response of nuclei -

SPOKESPERSONS:

Full Name	Institution		Title or Position	
Y. Fujita	Osaka University		Associate Professor	
A. Tamii	RCNP, Osak	a University	Associate Professor	
H. Fujita	RCNP, Osak	a University	Collaborative Researcher, RCNP	
Contact Phone number		$06 \ 6850 \ 5506$		
FAX number		$06\ 6850\ 5516$		
E-mail		fujita@rcnp.osaka-u.ac.jp		

EXPERIMENTAL GROUP:

Name	Institution	Title or Position
T. Adachi	KVI, Netherlands	Researcher
K. Hatanaka	RCNP, Osaka University	Professor
T. Kawabata	Kyoto University	Associate Professor
H. Matsubara	RCNP, Osaka University	Ph.D. Student
H. Okamura	RCNP, Osaka University	Professor
H.J. Ong	RCNP, Osaka University	Assistant Professor
T. Shima	RCNP, Osaka University	Assistant Professor
Y. Shimbara	Niigata University	Assistant Professor
T. Shizuma	Kizu Institute, JAERI	Researcher
G. Susoy	Istanbul University	Master Student
T. Suzuki	RCNP, Osaka University	Researcher
J. Thies	Muenster University	Ph.D. Student
Y. Yasuda	RCNP, Osaka University	Researcher

RUNNING TIME:

total 3 days natching 2 days

Ring : WS course

Beam tuning for the background reduction and dispersion matching 2 days Study of the properties of the (3 He, 3 He') reaction 1 day

BEAM LINE:

BEAM REQUIREMENTS:

Type of particle 3 HeBeam energy525 MeV (175 MeV/nucleon)Beam intensity ≤ 20 nABeam transportationdispersive mode of the WS beam lineOther requirementsenergy resolution ≤ 100 keV
halo-free, small emittance

BUDGET: No special budget is required.

1

TITLE: Test Experiment: (3 He, 3 He') Reaction at 175 MeV/nucleon - for the precise study of E1 response of nuclei -

Spokespersons: Y. Fujita, A. Tamii and H. Fujita

Summary of the Proposal

The largest concentration of the isovector E1 strength in nuclei, i.e., the Isovector Giant Dipole Resonance (IVGDR), has been observed systematically at the excitation energy $E_x = 31.2A^{-1/3} + 20.6A^{-1/6}$ MeV ($E_x = 15 - 23$ MeV) as a broad bump-like structure. The E1 strengths in the IVGDRs situated above the neutron separation energy S_n were studied by the (γ, n) reaction. On the other hand, (γ, γ') reactions [nuclear resonance fluorescence (NRF) method] or $(\alpha, \alpha'\gamma)$ coincidence experiments have been used for the study of the E1 responses in the region below the S_n energy, where E1 states are observed as discrete states. In order to obtain the whole E1response of a nucleus, these two methods should be combined. The largest difficulty, however, was that the connection was not always smooth.

Here we propose the ³He inelastic scattering reaction $[({}^{3}\text{He}, {}^{3}\text{He'})$ reaction] at an incoming energy of 525 MeV (175 MeV/nucleon) as a potentially good tool to study the overall view of the *E*1 responses in nuclei, not affected by the S_n energy. Due to this high energy of the ³He beam available at RCNP, it is expected that the *E*1 states excited by the Coulomb interaction become pronounced in a measurement at 0°. In addition, the high energy-resolution of the measurement that will be achieved by the realization of beam matching techniques will reveal the fine structures of the *E*1 response in nuclei.

The Grand Raiden spectrometer and the standard VDC focal plane detector system will be used for the analysis and detection of outgoing ³He particles. We request a good quality single-turn extracted 175 MeV/nucleon ³He beam of up to 10 nA. We seek to realize the complete beam matching conditions to achieve a high energy-resolution of about 30 keV. In addition, an appropriate condition of the vertical off-focus mode will be studied to realize an effective background subtraction. For such purposes, we plan to do (³He,³He') measurements on ²⁶Mg, ⁵⁶Fe and ⁵⁸Ni targets, and also on a heavier mass target such as Sn isotopes. It is expected that the obtained results will show the overall view of the *E*1 strengths, and they are compared with the existing (γ, γ') and ($\alpha, \alpha' \gamma$) data and also the (γ, n) results showing the *E*1 response in the energy region below and above S_n , respectively.