PROPOSAL FOR EXPERIMENT AT RCNP

10 July 2009

TITLE: Investigation of the Giant Monopole Resonance in the Lead Isotopes: Testing the MEM Effect on Nuclear Incompressibility

SPOKESPERSONS:

U. Garg, Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA e-mail: garg@nd.edu FAX: 1.574.631.5952

M. Fujiwara, Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047, Japan e-mail: fujiwara@rcnp.osaka-u.ac.jp FAX: (06)6879-8899

EXPERIMENTAL GROUPS:

University of Notre Dame, USA - Research Center for Nuclear Physics, Japan - Konan University, Japan - Tohoku University, Japan - Kyoto University, Japan - Tokyo Institute of Technology, Japan - IPN, Orsay, France - KVI, Groningen, The Netherlands.

RUNNING TIME:

Total running time not including beam preparation	6 days
BEAM LINE:	Grand Raiden

BEAM REQUIREMEN	NTS:
Type of particle	$^{4}\mathrm{He}$
Beam energy	$400 { m MeV}$
Beam intensity	2 nA–30 nA
Other requirements	beam must be halo-free
	highest stability over the running period is required

BUDGET:

Purchase of enriched targets 500,000 Yen for 204 Pb, 206 Pb, 208 Pb isotopes

TITLE:

Investigation of the Giant Monopole Resonance in the Lead Isotopes: Testing the MEM Effect on Nuclear Incompressibility

SPOKESPERSONS:

U. Garg, Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA

M. Fujiwara, Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047, Japan

SUMMARY OF THE PROPOSAL

We request beam time to measure the Giant Monopole Resonance (GMR) in the Lead isotopes, 204 Pb, 206 Pb, and 208 Pb. The primary aim behind these measurements is to test an intriguing idea put forward recently regarding nuclear incompressibility in doubly-magic nuclei: In analogy with nuclear masses, it has been suggested that there would be an effect of mutuallyenhanced magicity (MEM) in the K_A and, hence, in the energies of the GMR's in doubly-magic nuclei with respect to the nearby isotopes. We believe it is imperative (and urgent) to perform precise systematic measurements of the centroid energies of the GMR in 204 Pb, 206 Pb, and 208 Pb in order to test the MEM effect on nuclear incompressibility.