PROPOSAL FOR EXPERIMENT AT RCNP

25 January 2010

TITLE:

Low-energy dipole modes and deformation

SPOKESPERSONS:

Full Name Peter von Neumann-Cosel

Institution Institut für Kernphysik, Technische Universität Darmstadt,

Position Professor

Address Schlossgartenstr. 9, 64289 Darmstadt, Germany

E-mail vnc@ikp.tu-darmstadt.de

Full Name Atsushi Tamii

Institution Research Center for Nuclear Physics, Osaka University,

Position Associate Professor

Address 10-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan

E-mail tamii@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

Name	Institution	Title or Position
J. Carter	Univ. of Witwatersrand, South Africa	Associate Professor
H. Fujita	RCNP, Osaka Univ., Japan	Research Fellow
Y. Fujita	Dep. of Physics, Osaka Univ., Japan	Associate Professor
K. Hatanaka	RCNP, Osaka Univ., Japan	Professor
A.M. Heilmann	IKP, Technische Universität Darmstadt, Germany	Doctoral student
T. Kawabata	Dep. of Physics, Kyoto Univ., Japan	Associate Professor
A. Krugmann	IKP, Technische Universität Darmstadt, Germany	Doctoral student
Y. Maeda	Miyazaki Univ., Japan	Assistant Professor
H. Matsubara	RCNP, Osaka Univ., Japan	Doctoral student
R. Neveling	iThembaLABS, South Affica	Researcher
H.J. Ong	RCNP, Osaka Univ., Japan	Assistant Professor
N. Pietralla	IKP, Technische Universität Darmstadt, Germany	Professor
I. Poltoratska	IKP, Technische Universität Darmstadt, Germany	Doctoral student
A. Richter	IKP, Technische Universität Darmstadt, Germany	Professor
T. Saito	Miyazaki Univ., Japan	Master student
H. Sakaguchi	RCNP, Osaka Univ., Japan	Research Fellow
T. Shima	RCNP, Osaka Univ., Japan	Assistant Professor
Y. Shimbara	Niigata Univ., Japan	Assistant Professor
F.D. Smit	iThembaLABS, South Africa	Senior Scientist
T. Suzuki	RCNP, Osaka Univ., Japan	Post-Doctor
Y. Yasuda	RCNP, Osaka Univ., Japan	Post-Doctor
M. Yosoi	RCNP, Osaka Univ., Japan	Associate Professor
J. Zenihiro	RCNP, Osaka Univ., Japan	Post-Doctor

THEORETICAL SUPPORT:

Institution Name Title or Position V.Yu. Ponomarev IKP, Technische Universität Darmstadt, Germany Senior Researcher A.V. Sushkov JINR, Dubna, Russia Senior Researcher

J. Wambach IKP, Technische Universität Darmstadt, Germany Professor

RUNNING TIME: Installation time without beam 3 days(for each beam time)

> 2×2 days Beam tuning time for experiment Data runs 11.0 days

BEAM LINE: Ring: WS course

Type of particle polarized p BEAM REQUIREMENTS: Beam energy $300~{\rm MeV}$

 \leq 10 nA Beam intensity

Any other requirements energy resolution $\leq 25 \text{ keV}$

halo-free, small emittance

BUDGET: Experimental expenses 800,000 yen

RCNP EXPERIMENT E350

TITLE:

Low-energy dipole modes and deformation

SPOKESPERSONS: Peter von Neumann-Cosel and Atsushi Tamii

SUMMARY OF THE PROPOSAL

Polarized proton scattering at 300 MeV at 0° has been experimentally established as a tool to extract the properties of low-energy electric and magnetic dipole modes in heavy nuclei. A decomposition of the (p, p') cross sections can be achieved in two independent ways by either measuring angular distributions including 0° or by using a polarized beam and measuring polarization transfer observables to distinguish spinflip and non-spinflip contributions. Good correspondence of these two methods is achieved as demonstrated recently in a case study of 208 Pb. We propose to extend this technique to study a heavy deformed nucleus, 154 Sm, which allows to address two important questions: What is the impact of ground-state deformation on the properties of the pygmy dipole resonance? What is the nature of the double-hump structure of the spin M1 resonance in heavy deformed nuclei?