E356

PROPOSAL FOR EXPERIMENT AT RCNP

July 12, 2010

TITLE:

High-resolution study of Gamow-Teller transitions starting from $^{20}\mathrm{Ne}$ and $^{22}\mathrm{Ne}$

SPOKESPERSON(s):

Yoshitaka Fujita
Department of Physics, Osaka University
Associate Professor
Machikaneyama, Toyonaka, Osaka, 560-0043
+81-6-6850-5506
fujita@rcnp.osaka-u.ac.jp

EXPERIMENTAL GROUP:

	IAL GROUI.	
Full Name	Institution	Title or Position
H. Fujita	Dept. Phys., Osaka University	Researcher
T. Adachi	KVI, the Netherland	Researcher
A. Tamii	RCNP, Osaka University	Associate Professor
K. Hatanaka	RCNP, Osaka University	Professor
M. Yosoi	RCNP, Osaka University	Associate Professor
H.J. Ong	RCNP, Osaka University	Assistant Professor
T. Shima	RCNP, Osaka University	Assistant Professor
T. Suzuki	RCNP, Osaka University	Assistant Professor
Y. Yasuda	RCNP, Osaka University	Post-doc
J. Zenihiro	RCNP, Osaka University	Post-doc
H. Matsubara	CNS, Tokyo University	Post-doc
Y. Shimbara	Dept. Phys., Niigata University	Assistant Professor
M. Nagashima	Dept. Phys., Niigata University	M2
D. Frekers	IKP, Univ. Münster, Germany	Professor
H.J. Thies	IKP, Univ. Münster, Germany	PhD
P. Puppe	IKP, Univ. Münster, Germany	PhD
E. Ganioğlu	Science Faculty, Istanbul University	Assistant Professor
G. Susoy	Science Faculty, Istanbul University	PhD
B. Bilgier	Science Faculty, Istanbul University	M2
C. Kozer	Science Faculty, Istanbul University	M2

RUNNING TIME:

 $^{20}\rm{Ne}$ and $^{22}\rm{Ne},$ and natural Ne gas data taking runs $1.0~\rm{day}$ Measurements for calibration runs $0.5~\rm{day}$

BEAM LINE:

Ring : WS course, high resolution mode

BEAM REQUIREMENTS:

	Type of particle		$^{3}\mathrm{He}$
	Beam energy		$420~{\rm MeV}$
	Beam intensity (max.)		10 nA
	Energy resolution	$\Delta E \leq 100 \text{ keV}, \text{ sm}$	all emittance
BUDGET:	Enriched target gas ²⁰ Ne Target gas cell for dispers	and ²² Ne: sion matched beam:	300k yen 50k yen
SCHEDULE:	We request the beam tim	e in December, 2010.	

1 Summary of Experiment

• Summary of proposal and experiment:

Our aim is to study β^- -type Gamow-Teller (GT⁻) transitions starting from ²⁰Ne and ²²Ne target nuclei in the high energy-resolution (³He, t) experiments. It is suggested that $T_z = 0$ nucleus ²⁰Ne is well deformed. Assuming a Nilsson's deformed shell-model, we find that ²⁰Ne will behave as if it were a "doubly magic" nucleus as for the GT⁻ transitions are concerned. It is intriguing whether we can see the hindrance of GT transitions associated with the doubly-magic nature.

On the other hand, the nucleus ²²Ne, has $T_z = 1$, among other *sd*-shell nuclei ¹⁸O, ²⁶Mg, and so forth. Thus, $J^{\pi} = 1^+$, GT states with T = 0 are expected in the low-lying region of ²²Na and T = 1 and 2 GT states in the higher excited region. However, the GT⁻ transition strength from ¹⁸O is concentrated in only one low-lying T = 0 state and that from ²⁶Mg is distributed among three different T states. Our concern here is whether we see "transitional" behavior for the GT transition from ²²Ne.

It is known that (³He, t) experiments at forward angles including 0° and a beam energy of 140 MeV/nucleon are a unique tool to study GT^- transition strength. Because of the simplicity of reaction mechanism, and also the dominance of the $\sigma\tau$ interaction at 0°, the B(GT) values that are proportional to the square of the transition matrix element can be derived accurately.

In the $({}^{3}\text{He}, t)$ experiment, a high energy resolution of less than 30 keV is important in order to separate GT (and Fermi) states and also to determine the widths of states. Also important is the good angular resolution and the capability of reconstructing the scattering angle. The ion-optical conditions *dispersion matching* and *angular dispersion matching* will be realized between the spectrometer and the WS beam line to achieve a high energy-resolution and good angle-resolution, respectively. The over-focus mode of the spectrometer is essential in realizing good angle resolution in vertical direction and also in correcting kinematic aberrations. A gas target system developed at RCNP will be used.

• Apparatus and beam properties:

The spectrometer Grand Raiden and the standard VDC focal plane detector system will be used for the analysis and detection of outgoing tritons. We request ≈ 10 nA of good quality single-turn extracted 420 MeV ³He beam. In order to realize various matching conditions, including the dispersion matching condition, full capabilities of the WS course will be utilized.

• Beam time request:

Measurement of ²⁰Ne, ²²Ne and natural Ne gas targets : 1.0 day Sieve-slit run, measurement of ^{nat}Mg, for calibration purposes and the empty cell run without gas for the back ground subtraction : 0.5 day The total requested beam time : 1.5 days

(Note : for the beam tuning and the achievement of the dispersion matching, we need additional 2 days.)

• Schedule:

We request the beam time in November or December, 2010. We request that the present beam time will be performed as a part of the campaign of high energy-resolution $({}^{3}\text{He}, t)$ measurements using the gas target system.