E358

PROPOSAL FOR EXPERIMENT AT RCNP

July 13, 2010

TITLE:

Heavy-ion double charge exchange studies for p-shell nuclei

SPOKESPERSON:

Full Name Hiroaki Matsubara and Tomohiro Uesaka
Institution Center for Nuclear Study, University of Tokyo

Title or Position Postdoc Researcher/Associate Professor

Address 7-3-1 Hongo, Bunkyo, Tokyo

Phone number +81-48-464-4193/+81-48-464-4030

FAX number +81-48-464-4554

E-mail uesaka@cns.s.u-tokyo.ac.jp

EXPERIMENTAL GROUP:

Full Name Tomohiro Uesaka	Institution Center for Nuclear Study, University of Tokyo	Title or Position AP
Hiroaki Matsubara	Center for Nuclear Study, University of Tokyo	PD
Susumu Shimoura	Center for Nuclear Study, University of Tokyo	P
Shinsuke Ota	Center for Nuclear Study, University of Tokyo	A
Shinichiro Michimasa	Center for Nuclear Study, University of Tokyo	A
Yoshiko Sasamoto	Center for Nuclear Study, University of Tokyo	PD
Hiroshi Tokieda	Center for Nuclear Study, University of Tokyo	D1
Hiroyuki Miya	Center for Nuclear Study, University of Tokyo	D1
Shoichiro Kawase	Center for Nuclear Study, University of Tokyo	M2
Yosuke Kikuchi	Center for Nuclear Study, University of Tokyo	M1
Motonobu Takaki	Center for Nuclear Study, University of Tokyo	M1
Keiichi Kisamori	Center for Nuclear Study, University of Tokyo	M1
Shumpei Noji	Department of Physics, University of Tokyo	D3
Satoshi Sakaguchi	RIKEN Nishina Center	PD
Atsushi Tamii	RCNP, Osaka University	AP
Tomokazu Suzuki	RCNP, Osaka University	A
Masahiro Dozono	Department of Physics, Kyushu University	D3
Takahiro Kawabata	Department of Physics, Kyoto University	AP
Yukie Maeda	Department of Applied Physics, University of Miyazaki	A
Hiroyuki Miyasako	Department of Applied Physics, University of Miyazaki	M1

RUNNING TIME: Installation time without beam 5 days

Detector Setup 2 days
Data runs 8 days

BEAM LINE: Ring: WS course
BEAM REQUIREMENTS: Type of particle

TTS: Type of particle

Beam energy

80 MeV/nucleon

Beam intensity $\leq 100 \text{ pnA}$ Any other requirements energy spread $\leq 200 \text{ keV}$,

halo-free, small emittance

BUDGET: None

TITLE:

Heavy-ion double charge exchange studies for p-shell nuclei

SPOKESPERSON: Hiroaki Matsubara and Tomohiro Uesaka

SUMMARY OF THE PROPOSAL

Measurement of cross section for the double charge exchange (18 O, 18 Ne) reactions from 12 C and 9 Be targets at 80 MeV/nucleon is proposed. Ground states of 18 O and 18 Ne are among the same super-multiplet and the transition between them is just double spin-isospin or isospin flips keeping the spatial wavefunction unchanged. As a natural consequence of this, we can expect the transition is simple and its transition amplitude is large. By achieving a high energy resolution of $\Delta E \sim \! 300$ keV, we will resolve the ground state and low-lying states. The cross section for the ground and low-lying states will be used to study reaction mechanism of the heavy-ion double charge exchange process.

This is a first step to establish the heavy ion double charge exchange reactions as spectroscopic tools and what will be learned through the proposed experiment will provide us a guide for future SHARAQ experiment which the proponent are planning to perform at RIBF.