E359

PROPOSAL FOR EXPERIMENT AT RCNP

12 January 2010

TITLE:

A beam study for ${\rm ^{57}Mn}$ Mössbauer sepctroscopy

SPOKESPERSON:

SPOKESPERSO	N:			
Full Name	Kenya KUBO			
Institution	International Christian University			
Title or Position	Professor			
Address	10-2, Osawa 3-Chome, Mitaka, Tokyo 181-8585, Japan			
Phone number	+81-422-33-3454			
FAX number	+81-422-33-1449			
E-mail	kkubo@icu.ac.jp			

EXPERIMENTAL GROUP:

Full Name	Institution			Title or Position
Yasuhiro YAMADA	Department of Chemistry, Tokyo University of Science			Professor
Wataru SATO	Department of Chemistry, Kanazawa University			Associate Professor
Yoshio KOBAYASHI	RIKEN			Senior Researcher
Mototsugu MIHARA	Department of Physics, Osaka University			Assistant Professor
Takashi NAGATOMO	Internation	nal Christian University	Research Associate	
RUNNING TIME:	l day(for each be	am time)		
	Development of device			0 day
	Test running time for experiment			2 days
	Data runs		2 days	
BEAM LINE:			Ring : E	N course
BEAM REQUIREM	IENTS:	Type of particle	0	$^{58}\mathrm{Fe}$
·		Beam energy	($50A { m MeV}$
		Beam intensity	\geq	100 pnA
		Any other requirements		NA
BUDGET:	Travel exp	penses	200	0,000 yen
	Total		200	0,000 yen

TITLE: A beam study for ⁵⁷Mn Mössbauer sepctroscopy SPOKESPERSON: Kenya KUBO

SUMMARY OF THE PROPOSAL

A radioactive isotope beam (RI-beam) produced as a secondary beam after projectile fragmentation of nuclei is becoming very attractive in materials science research. The combined on-line technique of the ion implantation using energetic RI-beam and Mössbauer spectroscopy has unique features in contrast to conventional implantation Mössbauer effect studies. For instance, in the case of ⁵⁷Mn which decays to ⁵⁷Fe with a half-life of 1.45 min, Mössbauer measurements provide information of the chemical state, magnetic and electric environment of the probe nuclei. We have succeeded in obtaining the well-resolved Mössbauer spectra of ⁵⁷Fe in Si, KMnO₄, solid oxygen, MgO etc. in order to investigate the ultimately dilute impurity Fe state in solids, and the novel reaction products of the extremely highly excited atomic state after nuclear events. We expect to start a new ⁵⁷Mn Mössbauer spectroscopic study at RCNP after establishing the ⁵⁷Mn beam.

We set up and have been using an elaborate chemical apparatuses and measurement system of ⁵⁷Mn Mössbauer spectroscopy in RIKEN for the research of chemical reactions of substances, e.g. solid oxygen. Unfortunately, the available beamtime is quite limited and we have little time to conduct other research projects, e.g. solid state material science, by ⁵⁷Mn Mössbauer spectroscopy at RIKEN. Since the study on the dilute transition metal impurities in metal oxides has been attracting a lot of interest and in the competition in material science, we started a new ⁵⁷Mn Mössbauer project at HIMAC two years ago and succeeded in obtaining spectra of good quality for materials comprising of low atomic number (low Z) elements. Materials with more interest, e.g., ZnO, CaMnO₃, have high attenuation coefficients to 14.4 keV Mössbauer γ -ray and it has been revealed that they cannot be used as a sample at HIMAC because the implantation energy of HIMAC is too high to control and stop the probe nuclei densely near the surface of the sample in order to measure the Mössbauer γ -ray of energy as low as 14.4 keV.

Thus, our intention is to conduct material science studies at RCNP by ⁵⁷Mn Mössbauer spectroscopy with the use of the accelerator which provides secondary ions with appropriate implantation energy for high Z material study. Before starting material studies, as a first step we plan to carry out a study of the ⁵⁷Mn beam produced from ⁵⁸Fe to check the yield and quality of the beam. We have experience in beam studies and measurement of the Mössbauer γ -ray, and are ready to start an experiment.