RCNP Mini-Workshop 「加速器開発における高温超伝導線材開発の現状と関連トピックス」 2009年7月31日 @RCNP 4F講義室

KSOD超伝導AVFサイクロトロンの設計研究

共同研究者

日本原子力研究開発機構 高崎量子応用研究所 荒川和夫、奥村進、石井保行、斎藤勇一、宮脇信正、 水橋清、上松敬、倉島俊、千葉敦也、酒井卓郎、 奈良孝幸、横田渉、神谷富裕 住友重機械 立川敏樹、宮崎洋文、松原雄二、密本俊典

超伝導AVFサイクロトロンの仕様

K900超伝導AVFサイクロトロン

Ion	М	Q	M/Q	E/M (MeV)	E (GeV)
Н	1	1	1.00	300	0.3
С	12	4	3.00	100	1.2
	12	5	2.40	125	1.5
	12	6	2.00	150	1.8
Kr	84	28	3.00	100	8.4
	84	34	2.47	121	10.2
	86	36	2.39	126	10.8

★省スペース → 省建設コスト
★省電力 → 省運転コスト
★加速イオン種・エネルギー範囲が幅広い
★ビーム強度が大きい
★イオン種・エネルギーの切替が 早い

加速エネルギー範囲

主電磁石の磁場計算モデル

software for electromagnetic de

磁極&ヨーク&主コイル等のサイズ

K900超伝導AVFサイクロトロンの主なパラメータ

偏向リミット K _b	900	
集束リミット K _f	300	
ポール径	2300 mm	3セクターはπモード・ストップバンド
セクター数	4	(vr=N/2 共鳴, Nはセクター数)が問題。 (∵ 300 MeV 陽子はvr ≒ γ=1.32)
セクターギャップ	70 mm	- 引出機器、ビーム診断機器などの
最大平均磁場	4.5 T	設置スペースの確保が重要
引出半径	1050 mm	
ディー電極数	4 in valleys	
RF 周波数	24 to 64 MH	Iz
加速ハーモニクス	2, 3, 4	4セクター・4ディーの場合、 エネルギー利得の点で有利
最大ディー電圧	100 kV	

K900超伝導AVFサイクロトロンの構想図(平面図)

K900超伝導AVFサイクロトロンの構想図(断面図)

軽イオン加速と重イオン加速を両立させるための工夫

(1)幅広い加速イオン種・エネルギー範囲をカバー ・多様な等時性磁場の生成 (2) 陽子の高エネルギー化 ・縦方向の集束力の確保 (3) 重イオンの高エネルギー化 ・重イオンの多価化 (4)エネルギー下限値を現マシンとオーバーラップ ・共鳴現象の回避

★磁極形状の最適化

・スパイラル角ε (スパイラル係数)
 ・セクターのスパン角
 ・バレーステップ など

平均磁場とベータトロン振動数 : 150 MeV/n²⁰Ne¹⁰⁺

Focusing limitでの加速

Average Field

 ν r, ν z and Phase Shift

平均磁場とベータトロン振動数 : 56 MeV/n⁴⁰Ar¹⁰⁺

Bending limitでの加速

Average Field for 56 MeV/n ⁴⁰Ar¹⁰⁺

 ν r , ν z and Phase Shift

ビーム軌道の安定性(最大エネルギー)

ビーム軌道の安定性(最小エネルギー)

主コイルの蓄積エネルギーとローレンツカ(I)

主コイルの蓄積エネルギーとローレンツカ(Ⅱ)

●56 MeV/n ⁴⁰Ar¹⁰⁺ M1コイル上面に働くローレンツカ M2コイル上面に働くローレンツカ

主コイルの蓄積エネルギーとローレンツカ(Ⅲ)

中心領域のビーム軌道(h=2)

中心領域のビーム軌道(h=4)

引き出し領域におけるビーム軌道

粒子線治療用加速器の現状

Tsukuba

	cyclotron	synchrotron	
Protons	in use, Ø3.5-5 m	in use, Ø8-10 m	
Carbon ions	in design, Ø6 m	in use, Ø25 m	

放医研、兵庫県立粒子線治療センター、 (ハイデルベルグ大学、群馬大学など)

粒子線治療用サイクロトロンの 高エネルギー化&コンパクト化

(従来)陽子~230MeV → (目標)炭素~400MeV/u シンクロトロン 直径~20m

群馬大学重粒子線照射施設 炭素イオン 140 ~ 400 MeV/u 【解決策】
 ・高温超伝導磁場技術 本体電磁石 ECRイオン源

超電導AVFサイクロトロン 直径~7m !!

