RCNPミニワークショップ

「加速器開発における高温超伝導線材開発の現状と関連トピックス」

2009年7月31日(金) 13:00-16:00

大阪大学核物理研究センター 4F講義室

Bi系高温超電導線材を 用いた電磁石開発

阪大RCNP:畑中吉治、中川仁太、福田光宏、 依田哲彦、斎藤高嶺、秋野 祐一

東北大CYRIC: 酒見泰寛

放医研:野田耕司

KTサイエンス:川口武男

HTS-110: Donald Pooke

1. 序
 2. 超電導線の交流損失
 3. スキャニング磁石
 4. 交流損失測定
 5. 今後の展開

陽子線治療施設(国立がんセンター東病院)

陽子線治療施設では、照射装置が規模を決めている

ガントリー:直径が10~12m ビーム形成装置の小型が必要

開発の経緯

- 科学研究費補助金(萌芽研究)
 平成14年-15年
- 科学研究費補助金(基盤研究 (B))
 平成18年-19年
- 科学研究費補助金(基盤研究 (A))
 平成20年-22年
- 特許出願 平成18年
- JST独創的革新技術開発研究申請
 平成14年、平成15年 → 不採択

高温超電導線材を利用した磁石

• 小型

• 軽量

- 冷却が簡単(伝導冷却)、(液体)へリウムの供給不安
- 交流励磁の可能性(温度マージンが大きい)
- 応用範囲の拡大

高磁場NMR

スキャニング

.

ガントリー(三次元スキャニング)

シンクロトロン磁石

強磁場

(高温)超電導線の交流損失

$$Q = \oint P dt = -\mu_0 \oint dt \oint \mathbf{M} d\mathbf{H} = \oint dt \int_V (\mathbf{i} \cdot \mathbf{E}) dV$$

- hysteresis loss (in the superconductor)
- coupling loss (between filaments)
- eddy current loss in the metal sheath/substrate
- flux flow (I>Ic) in the superconductor
- current sharing in metallic sheath (I>Ic)

超電導電子対形成機構

準粒子候補:

結晶格子の振動(フォノン) 誘電体内の電気分極波(ポーラロン) 磁性体のスピン波(マグノン) 半導体内の電子-ホール対(エキシトン) 層状物質系での表面電子状態 金属内のdおよびf電子状態 有機物の局在電子状態(s状態)

準粒子振動の特性エネルギーに質量効果が期待される。

(銅)酸化物超電導体

1986: (La_{1-x}Ba_x)₂CuO₄の発見

Bednorz, Müller

第一世代高温超電導線(T_C = 110 K) Bi₂Sr₂Ca₂Cu₃O₁₀(Bi-2223) 第二世代高温超電導線(TC = 95 K) YBa₂Cu₃O₇(Y-123)

磁束線格子

超伝導体内に侵入した量子化磁束 は互いに反発しあい、等間隔に並び 三角格子(六方格子)を組む。

量子化磁束

第二種超電導体線材

超伝導体	Т _с [К] (0 Т)	μ ₀ Η _{c1} [T] (0 K)	μ ₀ Η _{c2} [T] (0 K)	μ ₀ Η _{c2} [T] (4.2 K)	Δ [meV]	コヒーレ ンス長 ξ [nm]	ロンドン長 λ [nm]
NbTi	9.5	0.015	12	11.5			
Nb ₃ Sn	18.3	0.01	29	22.0			
Y-123	93	0.025 (ab) 0.085 (c)	674 (ab) 122 (c)		20	1.3 (ab) 0.3 (c)	58 (ab) 140 (c)
Bi-2223	110	0.085 (c)	533 (ab) 22 (c)		30		200 (ab) 10 000 (c)

磁束は欠陥(常電導部、臨界電流 が低い部分、秩序パラメータが小 さい部分)にピン止めされている。 ピンニングカとローレンツカのバラ ンスで、臨界電流値が決まる。

$$U_{\rm p} = \pi \,\xi^2 d \cdot (1/2) H_{\rm C}^2 = \pi \,\xi^2 d \cdot (B_{\rm C}^2/2\mu_0)$$
$$f_{\rm p} \cong \pi \,\xi d \cdot (B_{\rm C}^2/2\mu_0)$$

磁化(増磁過程) (Bean:CSM)

0 < H < H* (中心到達磁場) $M = -(2a \cdot H - H \cdot H / J_c)/2a$ $= -H + H^2/2J_ca$

 $H^* < H$ $M = -(J_c a \cdot a)/2a$ $= -J_c a/2$ $= -H^*/2$

磁化(減磁過程)
(Bean:CSM)
$$H_{m} = 2H^{*} 以上に磁化した後の減磁$$
$$H_{m} - 2H^{*} < H < H_{m}$$
$$M = -J_{c}a/2 + H_{m} - H - (H_{m} - H)^{2}/4J_{c}a$$
$$-H_{m} < H < H_{m} - 2H^{*}$$
$$M = J_{c}a/2$$

2a

$$M_{\downarrow\uparrow} = \pm J_{c}a^{2} \left(\tanh \frac{H_{0}}{H_{c}} - 2 \tanh \frac{H_{0} \mp H_{a}}{2H_{c}} \right)$$
$$M_{rem}(H_{0}) = J_{c}a^{2} \left(\tanh \frac{H_{0}}{H_{c}} - 2 \tanh \frac{H_{0}}{2H_{c}} \right)$$
$$P = \nu \mu_{0} \oint M(H_{a}) dH_{a} = 4\nu \mu_{0} J_{c}a^{2} H_{c}f\left(\frac{H_{0}}{H_{c}}\right)$$
$$f(x) = 2 \ln \cosh x - x \tanh x$$

Phys. Rev. B 48 (1993) 12893

電流と磁場の同時掃引

ヒステリシス損失/全損失の等高線

▶●● | 高温超電導線のサイクル当りの交流損失

- $Q_H \propto I^{3-4}$ (Brandt) • $Q_C \propto f \cdot I^2$ • $Q_e \propto f \cdot I^2$ • $Q_R \propto I^2$
- 電力ケーブル、コイルの交流損失の測定・解析研究 が進められている。形状、線材の特性、磁場強度等の決定要因が多い。

超電導の熱力学

高温超電導線の臨界電流

Bi-2223テープの臨界電流の温度依存性。磁場の方向がテープ表面に 平行(左図)、垂直(右図)な場合。ゼロ磁場、77 Kで規格化してある。

コイルの仕様

コイル内法(Bx-コイル) 150 mm×300 mm コイル内法(By-コイル) 150 mm × 380 mm コイル断面 テープの臨界電流 コイル電流 コイル巻数 ピーク磁束密度

30 mm × 30 mm 130 A (77 K, 1 μV/cm) 200 A 420ターン/1台 0.6 T以上

スキャニング磁石

各位置でのコイルにかかる磁場

	S1	S2	$\mathbf{S3}$	S4	S5
B // (T)	Bx	Bx	Bx	Bx	Bx
(平行)	1.52	1.68	1.38	1.49	1.34
B _⊥ (T)	By	By	Byz	Bz	Bz
(垂直)	1.53	1.50	1.73	1.05	1.07

ダブルパンケーキの臨界電流(77K)

コイル番 号	コイル長 (m)	臨界電流 (A)
278	132	56.1
280	132	57.0
283	132	61.1
285	132	58.0
286	132	62.2
288	132	57.4
290	162	60.6
296	162	58.7
298	162	59.8
300	162	60.5
304	162	61.1
306	162	59.0
Bx_1	396	40.8
Bx_2	396	41.1
By_1	486	42.7
By_2	486	42.9

77 K での臨界電流測定

コイル1台の交流損失測定(77 K)

冷却性能の試験

●●● スキャニング磁石の交流損失測定(20 K)

M.P. Oomen, PhD thesis (2000)

- 数値解析、データとの比較
 3T 双極磁石の製作と評価
 軌道半径:400 mm
 偏向角度:40°
- 加速器用磁石の検討

- 1. 粒子線治療用装置の小型化を目指して高温超電導線 材を利用した磁石の開発研究を進めている。
- 2. 高温超電導材の温度マージンが大きい利点を生かし て、交流磁石に開発の重点を置いている。
- 3. 平成18-19年でスキャニング磁石磁石を製作し、交流損失等の測定を行った。
- 4. 今後の展開として、測定結果の定量的評価を進めると ともに、3テスラ双極磁石を製作している。シンクロトロ ンへの応用を念頭に、交流励磁を計画している。

ご清聴ありがとうございました。