28 Siの α クラスター相関と超変形状態

谷口億宇 (大阪大学)

延与佳子 (京都大学) 木村真明 (北海道大学)

平成 20 年 12 月 23-25 日 大阪大学核物理研究センター

Introduction: Cluster structure

- Structures or correlations, which have subsystems (clusters).
- Important in light nuclei such as p-shell and light sd-shell region. Be isotopes, ¹²C, ¹⁶O, ²⁰Ne,
- In heavy sd- and f-shell region and heavier region? $\longrightarrow |^{28}\text{Si}|$

Introduction: Superdeformation

[B. Singh et al, Nuclear Data Sheets, 97, 241 (2002).]

What is the lightest nucleus which have an SD state? ${}^{36}\mathrm{Ar}??$

Introduction: α and ${}^{12}C$ clustering

 $^{12}C+^{16}O$ potential model

[S. Ohkubo et al., Phys Lett. B578, 304

(2004).]

tates have been It is suggested that the proal studies have late band built on $J^{\pi} = 0^+$ (6.69 MeV) state contains ${}^{12}C^{-16}O$ cluster structure.

[K. P. Artemov *et al.*, Sov. J. Phys. 51, 777 (1990).] Candidates of α -²⁴Mg states have been observed, but theoretical studies have not been progressed yet.

Introduction: Various deformed structures

[S. Kubono *et al.*, Nucl. Phys.

A457, 461 (1986).]

Shape coexistence

Oblate shape

- the ground band (g)
- the β vibration band (vib)

Prolate shape

- the prolate band [normaldeformed (ND)]
- the excited prolate band [superdeformed (SD)]

Electric transitions in the SD band have not been observed.

Introduction

Topics

- 1. α -²⁴Mg and ¹²C-¹⁶O clustering
- 2. Prolate and oblate shape coexistence, β vibration and a largely deformed band.

Method

- Deformed-basis antisymmetrized molecular dynamics (AMD)
 - Both clustering and deformations are described simply.
- Multi-configuration mixing
 - 1. quadrupole deformation parameter β .
 - 2. distances d between centers of masses for α -²⁴Mg and ¹²C-¹⁶O clusters.

Antisymmetrized molecular dynamics (AMD) Wave function

$$|\Phi\rangle = \hat{\mathcal{A}}|\varphi_1, \ \varphi_2, \cdots, \varphi_A\rangle.$$

 $\varphi = \text{single-particle}$ wave function: triaxially deformed Gauss' wave packet

Energy variation imposing constraints (VAP: parity, VBP: angular momentum)

$$\delta \langle \Phi^+ | (\hat{H} + V_{\text{cnst}}) | \Phi^+ \rangle = 0$$

effective interaction \hat{H} : Gogny D1S constraint potential V_{cnst} : quadrupole deformation parameter β distances d between centers of masses of clusters

Multi-configuration mixing

Diagonalize Hamiltonian and Norm matrices.

$$|\Phi^{\rm GCM}\rangle = \sum_i f_i |\Phi_i\rangle$$

Constraint of a distance between centers of masses of clusters

[Y. Taniguchi, M. Kimura and H. Horiuchi, PTP 112, 475 (2004).]

- 1. It is easy to calculate various kinds of cluster structures.
- 2. Structure of each cluster, such as shape, orientation and core excitation, is optimized to minimize a total energy.

Energy curves

Five $K^{\pi} = 0^+$ bands and one $K^{\pi} = 2^+$ band.

Two developed α -²⁴Mg bands α_{0^+} and α_{2^+} .

Moments of inertia (MOI)

- 1. The theoretical and experimental MOI values for g, vib and ND states are consistent.
- Those for SD states are inconsistent.
 More experimental data such as E2 transitions are required for band assignment.

- 1. Shape coexistence: g, vib and ND
- 2. β vibration: g and vib
- 3. Superdeformation?: SD

red: positive parity, blue: negative parity

The ground and ND bands: $0p0h \ [(sd)^{12}]$ The SD band: $4p4h \ [(sd)^8(pf)^4]$

\frown	1 1		•	, •,•	1	$[D(D_{0})]$
\cup	uadrupole	$\mathbf{e} \mathbf{e}$	lectric	transition	strengths	B(EZ)
	, . .				O O O O	

_	J_i	J_f	$B(E2)_{\mathrm{exp}}$	Theory
intra	$2_{\rm g}^+$	0_{g}^{+}	13.2 ± 0.3	15.0
	$4_{\rm g}^+$	$2_{\rm g}^+$	13.8 ± 1.3	22.9
	$6_{ m g}^+$	4_{g}^{+}	9.9 ± 2.5	28.3
	$2^+_{ m vib}$	$0^+_{ m vib}$	5.5 ± 1.3	8.31
	$2^+_{\rm ND}$	$0^+_{ m ND}$		41.3
	$4^+_{\rm ND}$	$2^+_{\rm ND}$	29 ± 5	56.9
	$6^+_{\rm ND}$	$4^+_{\rm ND}$	> 16	58.4
	$2^+_{\rm SD}$	$0^+_{ m SD}$	—	130.7
	$4^+_{\rm SD}$	$2^+_{\rm SD}$	—	186.3
	$6^+_{\rm SD}$	$4^+_{\rm SD}$		204.0
inter	$0^+_{ m vib}$	$2_{\rm g}^+$	8.6 ± 1.6	5.96
	$2^+_{\rm vib}$	0_{g}^{+}	0.029 ± 0.009	0.27
	$2^+_{\rm vib}$	$4_{\rm g}^+$	0.8 ± 0.3	3.11

band	J^{π}	β		α - ²⁴	α - ²⁴ Mg		$^{12}\text{C-}^{16}\text{O}$	
		oblate	prolate	Т	А	T	А	
g	0_{1}^{+}	.97		.95				
	2_{1}^{+}	.96		.95				
vib	0_{2}^{+}	.96		.88				
	2^{+}_{2}	.94		.85				
ND	0^{+}_{3}		.98				.86	
	2^{+}_{3}		.98				.86	
SD	0_{5}^{+}		.93		.87	.14		
	2_{5}^{+}		.93		.87	.15		
α_{0+}	0_{6}^{+}	.21		.69				
	2_{6}^{+}	.23		.85				
α_{2^+}	2_{4}^{+}	.21		.96				
	3_{1}^{+}			1.00				

Component of cluster structures

$$\begin{split} |\Phi\rangle &= c \; |\Phi_X\rangle + \sqrt{1 - |c|^2} \; |\Phi_{R_X}\rangle, \; \langle \Phi_X |\Phi_{R_X}\rangle = 0, \\ \text{component} &= |c|^2 \end{split}$$

Summary

- 1. Structures of 28 Si has been studied using AMD + Multi-configuration mixing.
- 2. The ground, β vibration and SD bands contain the α -²⁴Mg cluster component, and the SD band contains the ¹²C-¹⁶O cluster component.
- 3. The α_{0^+} and α_{2^+} bands have developed α -²⁴Mg cluster structure.
- 4. Prolate and oblate shape coexistence (g, vib and ND) and β vibration (g and vib) are described.
- 5. B(E2) and MOI values have good agreement with experimental data in low-spin states.