拡張したAMDを用いた B、C同位体の構造研究

北大VBL 古立直也 北大創成 木村真明、KEK 土手昭伸 YITP 延与佳子

Introduction

ハロー構造における芯励起の重要性

▶ p shellハロー核におけるクラスター励起

⁸B: α+³He+p 1陽子ハロー

⁷Be* (J^π=1/2⁺ at 429 kev) component has been determined to be 13 %
 by the measurements of γ-rays in coincidence with the one-proton removal reaction

▶ p-sd shellハロー核における芯励起

¹⁹C: ¹⁸C+n 1中性子ハロー¹⁷B: ¹⁵B+n+n 2中性子ハロー

• ¹⁹C: Glauber model analysis of reaction cross section.

R. Kanungo et al. Nucl. Phys. A 677 (2000)

¹⁷B: Two neutron removal fragment from ¹⁷B (¹⁵B) has been found to be in 5/2- excited state.

R Kanungo et al. Phys. Lett. B608 (2005)

Introduction

- 芯励起を伴うハロー構造を研究するための理論模型を構築
 Multiple-width Gaussian basis AMD (MAMD)
 - AMDの核子波動関数を改善
 - ー波束幅の異なるガウス波束の重ね合わせ
 - → ・ 従来のAMDと同様芯励起を自然に記述
 - ・ 従来のAMDでは難しいハロー構造を記述
- ハロー構造記述におけるMAMDの有効性をテスト
 - He同位体の構造研究
 - ー芯励起を伴わないα+xn構造において
 - ハロー構造がどのように記述されるかを議論
- ▶ 軽いハロー核の構造研究に適用
 - ●[°]B、⁹Cの構造研究
 - -α+3He+p、α+3He+p+p 構造が期待されるこれらの核において
 芯励起を伴うハロー構造がどのように記述されるか議論
 - ¹⁵Cの構造研究
 - -1/2⁺状態の逆転に注目
 - 1/2+状態のにおけるハロー構造とその芯核の構造を議論

MAND (Multiple-width Gaussian basis AMD)

AMD wave function

$$\Phi_{int} = \frac{1}{\sqrt{A!}} \det[\varphi_1, \varphi_2, \cdots, \varphi_A],$$

核子波動関数を拡張

• Ordinal AMD $\varphi_{i}(\mathbf{r}) = \phi_{i}(\mathbf{r})\chi_{i}\tau_{i}.$ $\phi_{i}(\mathbf{r}) = \exp\left[-\nu\left(\mathbf{r} - \frac{\mathbf{Z}_{i}}{\sqrt{\nu}}\right)^{2}\right]$ • MAMD $\varphi_{i}(\mathbf{r}) = \sum_{\alpha} C_{i}^{\alpha} \phi_{i}^{\alpha}(\mathbf{r}) \chi_{i}^{\alpha}\tau_{i} \quad \phi_{i}^{\alpha}(\mathbf{r}) = \exp\left[-\nu_{i}^{\alpha} \left(\mathbf{r} - \frac{\mathbf{Z}_{i}^{\alpha}}{\sqrt{\nu_{i}^{\alpha}}}\right)^{2}\right]$ = $\left[N-Z\right]$ 個の中性子(陽子)波動関数に対してa=2 それ以外の核子波動関数に対してa=1

Framework

Variational function

$$\Phi^{\pm} = P^{\pm} \Phi_{int} = \frac{(1 \pm P_x)}{2} \Phi_{int}$$

Hamiltonian

$$\hat{H} = \hat{T} + \hat{V}_{nucl} + \hat{V}_c - \hat{T}_g$$

Energy variation

$$E^{\pm} = \frac{\langle \Phi^{\pm} | \hat{H} | \Phi^{\pm} \rangle}{\langle \Phi^{\pm} | \Phi^{\pm} \rangle}$$

Angular momentum projection

$$\Phi_{MK}^{J\pm} = P_{MK}^J \Phi_{int}^{\pm}$$

GCM

Generator coordinate; proton and neutron radius

$$\Psi_n^{J\pm} = \mathop{\scriptscriptstyle \Sigma}_{ij} c_{ij}^n \Phi_{MK}^{J\pm}(r_i^p,r_j^n)$$

$$\hat{V}_{nucl}$$
; Volkov No.2+G3RS force

MAMDの有効性

Results

MAMDの有効性 ⁶He

中性子の空間的広がりの記述を改善

● 殻模型的構造の記述を改善

MAMDの有効性 ⁸He

中性子の空間的広がりの記述を改善

● 殻模型的構造の記述を改善

⁸Bの計算結果

(b)

(c)

GCM

Exp.

-31.8

-31.7

-35.7

-37.38

2.35

2.55

2.50

2.55

6

2.2 0.72	
<u>4 / 1 1 GCM(50 bases):</u>	
4.3 0.95 $I_{IJ} = n_{A} I_{A} I_{A} (p)$	n_{λ}
6.45 1.04 $\Psi_n^{o^{\perp}} = \sum_{ij} c_{ij}^{n} \Psi_{MK}^{o^{\perp}}(r_i^r, r_j^r)$	j)

⁸Bの計算結果

⁸Bの計算結果

GCM(50 bases); $\Psi_n^{J\pm} = \sum_{ij} c_{ij}^n \Phi_{MK}^{J\pm}(r_i^p, r_j^n)$

⁹Cの計算結果

AMDの結果との比較

¹⁵Cの計算結果 6 6 10⁻² 4 2 2 10⁻³ C $\beta_{p}=0.39$, $\gamma_{p}=0.96$ (oblate) *+ 0 0 -2 -4 -2 β_=0.32, γ_=0.13(prolate) -4 -6 -6 10-4 -6 -8 6 4 2 0 -2 -4 -6 -8 0 -2 -4 8 6 10⁻² $\beta_{p} = 0.32, \gamma_{p} = 1.03$ (oblate) 2 2 10⁻³ d 0 0 $\beta_{p}=0.04$ (spherical) -2 -2 -4 -6 10^{-4} 2 0 - 2 - 4 4 2 0 -2 -4 -6 -8 -6 -8 8 6 6 r_n [fm] r_p [fm] Energy [MeV] r_m [fm] GCM; 30 bases rⁿ=2.1~2.5 fm (a) 1/2⁺ 103.7 2.47 2.27 2.59 (0.1 fm間隔), (b) 1/2⁺ 102.9 2.38 2.19 2.50 $r^{p}=r^{n}+0.1 \sim r^{n}+0.6 \text{ fm}$ GCM 1/2⁺ 105.9 2.26 2.66 2.51 (0.1 fm間隔) GCM 5/2⁺ 2.26 2.51 105.4 2.41 Ex. 5/2+ 0.5 (1)A. Ozawa et al., 2.40⁽¹⁾ 106.50 Exp. (1/2⁺) Nucl. Phys. A608 63(1996)

 $2.50^{(2)}$

 $5/2^{+}$

0.74

Ex.

(2)A. Ozawa et al., Nucl. Phys. A691 599(2001)

Summary

He同位体においてMAMDの有効性を議論

■ 中性子の空間的広がり、殻模型的構造の記述を改善 → ^{4,6,8}Heの結合エネルギー、半径を系統的に再現

● ⁸B、⁹C、¹⁵Cの構造研究-ハロー構造とその芯核の構造を議論

■ 芯核がα+³He構造を持ち、緩く束縛したα+3He+p 3体系となる。

■ 電気四重極モーメントはα、³Heクラスター間距離に敏感 1陽子ハローの発達は電気四重極モーメントの増加にはほとんど寄与しない。

■ 芯核におけるα+³Heクラスター構造と殻模型的構造の両方が⁹Cの性質に重要

■ 芯核におけるクラスター構造の発達がµモーメントのSchmidt valueからのずれを説明

• ¹⁵C

⁸B

⁹C

- 1/2⁺状態の逆転を再現するようにeffective interactionを決め、 結合エネルギー、半径、5/2⁺状態の励起エネルギーをよく再現
- 1中性子が1s1/2軌道を占有する構造とprolate変形する構造の両方が重要 これらの構造は異なる芯核の変形を持つ