超低速反陽子ビームを用いた

原子衝突実験

Hiroyuki A．TORII 鳥居窅之

ASACUSA oollbbontion（GERN）

永田祐吾，豐田寛，今尾告士，黒田直更，V，LVarentsov，1崎泰規

超低速反陽子ビームを用いた

原子衝突実験

Hiroyuki A．TORII 鳥居窅之

ASACUSA oollbbontion（GERN）

永田祐吾，豐田寛，今尾告士，黒田直更，V，LVarentsov，1崎泰規

物質の世界

C 対称性
P 対称性 T 対称性 CP 対称性 CPT 対称性

反物質の世界

Discovery of Antiproton

1955；E．Segré \＆O．Chamberlain
Lawrence－Berkeley Lab．，Bevatron

反陽子の発見

Anti－proton detector used successfully in 1955 by Segre＇s group．M indicates bending magnets，Q indicates focusing quadrupole magnets，S indicates scintillation counters and C indicates Cerenkov counters to eliminate false counts

Anti－proton detector，used by Lofgren＇s group，analyzed the beam from Segre＇s magnets．The small Cerenkov counters distinguished the anti－proton from a meson，the large one registered the annihilation of an anti－proton with a proton．

First annihilation star＂Faustina＂of an anti－proton found in film exposed by the Segre group，1955．Segre＇s group pressed forward with the scanning of emulsion stacks in collaboration with a group under Edoardo Amaldi in Rome．The Rome team found the first annihilation star，whose visible energy（the combined energy of all ionizing fragments）amounted to above 826 MeV ，an amount deemed appropriate for an explosion initiated by an antiproton．（The preceding information was excerpted from the text of the Fall 1981 issue of LBL Newsmagazine．）

反陽子へリウム原子の精密分光

Delayed Annihilation Time Spectrum of Antiprotons

はじめはハイパー核の研究中に K－中間子の
長寿命として観測。次いで π^{-}でも確認。
 value

共鳴周波数の理論計算との比較

$$
\frac{\mid \Delta E_{\mathrm{th}}-\Delta E_{\text {expl }}}{\Delta E}=\frac{\left|\lambda_{\mathrm{th}}-\lambda_{0}\right|}{\lambda_{0}}<2 \times 10^{-6}
$$

ppm で一致

$597.220 .240 \quad .260$ Vacuum wavelength［nm］
 $\begin{array}{lllllllllllll}70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50\end{array}$
 反陽子の質量を精密に決定

- 反陽子ヘリウム原子
- クーロン三体系；高リュードベリ準位
e^{-}
－電子（原子単位で質量＝ 1 a．u．）
\bar{p}
- 重粒子（原子質量単位u（a．m．u．））
- 反陽子（陽子と比較；CPT対称性）
- ヘリウム原子核（対陽子質量比は既知）
- 反陽子の質量の精密測定研究
- 2006年：精度 2×10^{-9}（パルス増幅，光コム）
- 陽子と電子の質量比の決定へ
- 2006年：精度 3×10^{-9}

CODATA
との比較

FIG．6．（a）Frequency of the $\bar{p}^{4} \mathrm{He}^{+}$transition $(37,35) \rightarrow$ $(38,34)$ measured in this and previous $[4,16]$ experiments． （b）Proton－to－electron［7］and antiproton－to－electron mass ratios．
－反陽子ヘリウム原子の精密レーザー分光による反陽子の質量の精密測定研究
－反陽子ヘリウム原子のマイクロ波分光による反陽子の磁気モーメントの測定研究

超低速反陽子ビームの生成と

原子衝突実験

低エネルギー反陽子ビーム
— 原子衝突過程の優れたプローブ
ionization cross section for atomic $\bar{p}-D$

Eneag［kev］ionization：1－1000 $\mathrm{keV}^{\text {Fraegy key］}}$

$$
\bar{p}+A \rightarrow \bar{p}+A^{+}+e^{-}
$$

原子物理の単純な系でも衝突過程はまだ理解が足りない！

EXOTCATEITOMNOO

capture + ioniz. cross. sect. for $\overline{\mathrm{p}}+\mathrm{H} / \mathrm{H}_{2}$

$\overline{\mathrm{p}}+\mathrm{He}$
Cohen, Sakimoto, Tong, ...

atomic formation : 1-100 eV

$$
\sigma_{n \ell}=\sum_{L} \sigma_{n \ell}^{L}
$$

X.-M. Tong et al.

Total Angular Momentum

Total Angular Momentum

反物質の世界

CPT 対称性

高エネルギー （素粒子） から低エネルギー （原子）
への挑戦

反陽子の生成

$\mathrm{E}=\mathrm{mc}^{2}$
 エネルギーと質量は等価

エネルギー・運動量保存
バリオン（重粒子）数保存

反陽子の生成

$$
\begin{gathered}
\mathrm{E}=\mathrm{mc}^{2} \\
\text { エネルギーと質量は等価 } \\
\mathrm{p}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{p}+\mathrm{p}+\overline{\mathrm{p}} \\
\text { エネルギー・運動量保存 } \\
\text { バリオン(重粒子)数保存 }
\end{gathered}
$$

Accelerator chain of CERN (operating or approved projects)

p (proton)	$\overline{\mathrm{p}} \downarrow$ (antiproton)	AD Antiproton Decelerator	LHC Large Hadron Collider
ion	\sim proton/antiproton conversion	PS Proton Synchrotron	n-ToF Neutrons Time of Flight
neutrons	\square neutrinos	SPS Super Proton Synchrotron	CNGS Cern Neutrinos Grand Sasso

Cooling scheme

5.3 MeV antiproton from AD RFQD (Radio-Frequency

Quadrupole Decelerator)

~ 100 keV antiproton thin degrader foils
< 10 keV antiproton
\downarrow MRT (Trap) sub-eV antiproton
\downarrow beamline

extraction of $10-1000 \mathrm{eV}(\ldots 20 \mathrm{keV})$ antiproton beam

Confinement and Cooling

Capture

ca. 200 ns

Cooling

Electron ejection

Compression

Extraction

反陽子のトラップと蓄積

－1 AD shot あたり 120 万個の反陽子を真空中 $\left(10^{-10} \mathrm{~Pa}\right)$ にトラップ
－数 shot の蓄積により最大 1000 万個 ！！！

0 s

60 s

120 s
0.5 mm diam.

200 s

超低速反陽子ビーム

超低速反陽子ビーム

超低速反陽子ビーム

10－1000eV の単ーエネルギービーム

再加速も可能（upto 30 keV ）

30～70万個の反陽子

10～30秒間の連続ビーム引き出し
$2 \mu \mathrm{~s}$ のパルス引き出しも可能

Gas-jet chamber

$p \sim 3 \times 10^{12} \mathrm{Cm}^{-3}$ 500 I/s TMP (achieved value)

skimmers
pulsed nozzle
25 atm gas

Gas-jet target

Supersonic Jet
RT (300 K)
25 atm

$$
\begin{aligned}
& \rho \sim 3 \times 10^{12} \mathrm{~cm}^{-3} \\
& \rho \sigma d=0.03 \% \\
& @ \sigma=\$ \mathrm{~cm}^{2} \\
& a \text { few } \times 10^{-17} \mathrm{~cm}^{2} \\
& 10^{5} \overline{\mathrm{p}} \Rightarrow 30 \overline{\mathrm{p}} \text { atoms }
\end{aligned}
$$

$$
3 \times 10^{5} \overline{\mathrm{p}} \Rightarrow 10 \overline{\mathrm{p}} \text {-atoms }
$$

生成する反陽子原子はガスジェットで偏向する！ （速度： $1 \mu \mathrm{~s} / \mathrm{lcm}$ ）
（a few mm ：運動量保存）

Detectors

Scintillator

検出器系

- 弱磁場 \＆弱電場により電子を横方向に引き込む
- 反陽子の軌道への影響は十分小さくできる
- 反陽子と電子を前方および横のMCP で分けて検出

反陽子 $(30 \mathrm{eV})$

電子 $(5 \mathrm{eV})$

反物質の世界

反水素原子

反水素原子

$$
\overline{\mathrm{H}}=\left(\overline{\mathrm{p}} \mathrm{e}^{+}\right)
$$

原子番号 -1

最も単純な反物質

Antihydrogen Production in Flight (PS210 experiment at LEAR)

PRESS RELEASE

Laboratoire Européen pour la Physique des Particules European Laboratory for Particle Physics Europäisches Laboratorium für Teilchenphysik Laboratorio europeo per la fisica delle particelle

10 января 1996 года

 Motyctomenem: возмоши , реапенсенсационное тапую мысль наводит роов еннестие
FIRST ATOMS OF ANTIMATTER PRODUCED AT CERN

In September 1995, Prof. Walter Oelert and an internationa 20. Mr- 8 aturno aic KFA, Erlangen-Nuernberg University. Сат n succeeded for the first tim - .

Herstellung von Antimaterie
 Die Enterprise bleibt Fiktion

Physiker dämptt Euphorie nach bahnbrechender Entdeckung Von unserem Redakteur Von unser VAHAR-MATLAR LOTHE Wenn's Julich/Halle/MZ. Wenns eng wird, Klingonen-Floct galaktische Rohren Lasern die Enterprise im Staubsauger
Gamma-Quadranten verschwti-
unumstritten. Dennoch kann Walter Oelert uber die Enterp lächeln: schichten nur mude etwas fur schichten Hiction ist etwas Science Fitir "Science Und die Fans werden Traume nach meiner Enteckung auch nater tramen mussen Nutzung der von einer pra. Antimaterie.

5物筧 1 合世界で初 反水素原子
 $\underset{\mathrm{Tm}}{\text { Tese }}$

生誕子原質物反

秒四之分㯖一留存只質物反 失消到來出造製中験赛在 組小

TIME

DaB
Materi
Mengel
den，dams

Does Antimatter Matter？
Physicists created the first atoms of antimatter ever

冷たい反水素原子の生成（2002，ATHENA collab．）

- CPT 対称性テスト
- 1S－2S 分光
－GS－HFS
基底状態超微細構造
－重力実験（WEP）

Production of Cold Antihydrogen

PHYSICAL REVIEW LETTERS

FIG. 1. Overview of the trap and detectors. Antiprotons are loaded from below (left), into the trap electrodes below the rotatable electrode. Positrons are simultaneously loaded from above (right) into the electrodes above the rotatable electrode.
formation is observed within the lower region detailed in the next figure.

FIG. 2 (color). (a) Electrodes for the nested Penning trap. Inside is a representation of the magnitude of the electric field that strips atoms. (b) Potential on axis for positron cooling of antiprotons (solid line) during which ${ }^{-}$formation takes place, with the (dashed line) modification used to launch - into the well. (c) Antiprotons from ${ }^{-}$ionization are released from the ionization well during a 20 ms time window. (d) No ${ }^{-}$are counted when no are in the nested Penning trap.

Mass/energy CPT limits

absolute precision (left edge)
$=$ relative precision (length)
measured quantity (right edge)

ASACUSA cusp Trap

17
RF frequency
$\overline{\mathbf{H}}_{\mathrm{HI}}$
$\underset{\text { Microwave }}{\text { Cavity }} \begin{gathered}\text { Sextupole } \\ \text { Lens }\end{gathered} \mathrm{H}$ Det．
基底状態超微細構造
反水素原子生成

ASACUSA cusp Trap

カスプトラップによりる
反水素原子生成

基底状態超微細構造 （反陽子の磁気モーメント）

CPT-Symmetric Situation
Apple Anti-Apple

Earth

Anti-Earth

Anti-Apple

Earth

東大院総合•理研 山崎研東大理 早野研，Wien SMI， Aarhus Univ．，Brescia Univ．

ASACUŚA collaboration

反物質科学

原子物理学の新たな分野の開拓
様々な物理分野の知識が必要な境界分野
－原子衝突，原子核，素粒子，高エネルギー加速器物理，レーザー，プラズマ物理中規模の人数による国際的共同研究

CERN では「小さい」規模の研究
Unique experiments，Dream for the future

