Meson photoproduction at SPring-8/LEPS

$\pi^{0},\,\eta,\,\eta',\,\omega\,$ and ρ^{0} photoproduction off proton

$\gamma \mathbf{p} \rightarrow \mathbf{p} \mathbf{x}$

住浜 水季 Osaka university, RCNP

Dec. 24 2008

Physics motivation

Diagram in tree level

Resonance term +Born term

s-channel

Missing baryon resonances

✓ N* and ∆* resonances are well studied experimentally and theoretically. Test whether quark model calculation is valid or not.

Below M = \sim 1700 MeV \rightarrow their properties are well known. Above M = \sim 1700 MeV \rightarrow many unknown or missing baryon resonances. partly due to lack of experimental data.

✓ Where are missing resonances?

 Not couple to πN, but couple to ρN, ηN, η'N, ωN. (KΛ, KΣ, discussion with D₁₃ missing resonance.).
 -ηN, η'N (ss-bar component)
 -Isospin filter : η, η', ω I=0, → N* only π, ρ I=1, → N* and Δ*
 High mass resonances, one-star, two-star, M > 1700 MeV

Table of Baryon excited states -PDG assessment

u-channel

Coupling constant, nucleon pole

 The production mechanism will be investigated in a transition range from nucleon-meson degrees of freedom to quark-gluon degrees of freedom. quark counting rule → dσ/dΩ ~ s⁻⁽ⁿ⁻²⁾ = s⁻⁷

large momentum transfer (middle angles)

• g_{NNM} coupling constant.

dσ/dΩ of πN, ηN, η'N, ωN. ρN Ratios of these modes → $g_{\pi NN}$, $g_{\eta NN}$, $g_{\eta'NN}$, $g_{\omega NN}$ But, not so simple...difficult to determine values. Can we extract a possible range? N*, Δ* exchange in u-channel?

• Nucleon Regge pole, $d\sigma/du \sim S^{2\alpha(u)-2}$

Existing data at JLab and ELSA

η photoproduction

 JLab/CLAS data, PRL89,222002-1 W < 2.1 GeV
 Crime evidence of S₁₁ 1780/1846MeV
 Bonn/ELSA data, PRL94,012004 W < 2.5 GeV
 No evidence of S₁₁ 1780/1846MeV.
 Crime evidence of N*(2070)D₁₅with (M,Γ) = (2068MeV, 295MeV).

η^{\prime} photoproduction

 Jlab/CLAS data, PRL96,062001 W < 2.3 GeV S₁₁(1535), P₁₁(1710) and J=3/2. g_{NNη'} ~ 1.33.
 Bonn/ELSA data, PLB444,555 W < 2.4 GeV, low statistics. evidence of S₁₁(1897) / P₁₁(1986)

K. Nakayama and H. Haberzettl PRC73,045211 (2006). possible range $\rightarrow g_{NN\eta}$, < 2 related to Flavor-singlet axial charge G_A(0) Predict D₁₃(2080), P₁₁(2100) at W=2.09 GeV

ω photoproduction

JLab/CLAS data, Phys.Rev.Lett.90:022002,2003
 Eγ > 3 GeV, dσ/dt, two-gluon exchange...
 Bonn/ELSA data, Eur.Phys.J.A18:117-127,2003
 P₁₁(1710), small contribution of P₁₃(1720) and P₁₃(1900), W~2.15 GeV???

ρ^0 photoproduction

JLab/CLAS data, Phys.Rev.Lett.87:172002,2001.
 Eγ > 3 GeV, dσ/dt, two-gluon exchange...
 Bonn/ELSA data, Eur.Phys.J.A23:317-344,2005 forward angles, t-channel

Experiment at LEPS

Backward meson photoproduction

Missing mass spectrum

 $\begin{array}{c} \gamma p \rightarrow p \pi \pi \\ \gamma p \rightarrow p \pi \pi \pi \\ \gamma p \rightarrow p \pi \pi \pi \pi \\ \gamma p \rightarrow p \pi \pi \pi \pi \\ \gamma p \rightarrow p \underline{\pi^0, \eta, \eta',} \\ \underline{\omega, \rho}, \phi \end{array}$

Distributions of single meson production and multi-pion production are generated by MC simulation, and are fitted to data by a template fit determining a relative height.

$$\frac{\chi^2 = 1 \sim 3.}{\text{Systematic error 5\%}}$$

η,η',ω and ρ^0 photoproduction

η : Differential cross sections

LEPS data
 Jlab/CLAS data
 Bonn/ELSA data

SAID -partial-wave analysis
 PRC66,055213(2002)
 ---- Eta-MAID - isobar model

NPA700(2002) 429

LEPS data agree with the CLAS and ELSA data well. W (GeV)
wide structure is seen around W=2.15 GeV.
SAID/MAID do not reproduce the structure.

η' : Differential cross sections

- LEPS data
- O Jlab/CLAS data, PRL96,062001
- ▲ Bonn/ELSA data, PLB444,555

 SAID -partial-wave analysis preliminary fit
 – – - Eta-Prime MAID - Regge pole PRC68, 045202 (2003), New fit

ω, ρ^0 : Differential cross sections CLAS , ω and ρ^0 at E_Y > 3.2 GeV. LEPS data $d\sigma/d\Omega \sim 0.03$ for ρ • ω, •ρ $d\sigma/d\Omega \sim 0.015$ for ω ELSA $d\sigma/d\Omega \sim 0.2$ for ω at W=2.0-2.15 GeV 0.8 (qn) 0.8 0.4 0.2 $\cos\Theta_{\rm cm} = -0.95$ $\cos\Theta_{cm} = -0.85$ ω,ρ 0 $\cos\Theta_{\rm cm} = -0.75$ $\cos\Theta_{\rm cm} = -0.65$ 0.6 0.4 0.2 0 1.8 1.9 2 1.8 1.9 2 2.12.4 2.12.32.22.3 2.2 W (GeV) •No resonance-like (bump) structure, •Mostly flat distribution for ω photoproduction.

Energy distribution of differential cross sections

LEPS data

π^0 photoproduction

π^0 photoproduction data

- •GRAAL below W=1.9 GeV, CLAS/ELSA ~ 2.5 GeV. Not cover backward angles.
- Enhancement in cross sections at ~2.2 GeV for charged pion photoproduction at CLAS. → new resonance?
 L.Y.Zhu, et. al, PRL 91 022003(2003)/PRC,71 044603(2005)
- Angular dependence in induced polarization for neutral pion photoproduction around 2.5 ~ 3.1 GeV at CLAS.
 K. Wijesooriya, et al., Phys. Rev. C 66 (2002) 034614.

LEPS : Backward angles

- Differential cross sections
- Photon beam asymmetries (single polarization) strong restriction.

Differential cross section in $\text{cos}\theta_{\text{cm}}$

• LEPS data • Existing data (GRAAL, ELSA, old Bonn).

Energy dependence of slope in differential cross sections

Photon beam asymmetry Σ

LEPS data
Existing data.
PLB544(2002)113
NPB104(1976)253...

Positive sign: $\sigma_{/\!\!/} < \sigma_{\perp}$ Negative sign: $\sigma_{/\!\!/} > \sigma_{\perp}$

Strong angular dependence above <u>1.9 GeV</u>.
Higher mass resonances need to be included.

Summary

 η photoproduction at backward angles with W=1.9 – 2.3GeV.

• Wide bump structure is seen around W=2.15 GeV. $D_{12}(2070)$ with $(M_{12}) = (2068Me)(-295Me)()$

 $D_{15}(2070)$ with (M, Γ) = (2068MeV, 295MeV).

- η [•] photoproduction
- Small bump structure is seen around W=2.25 GeV.
- Prediction of $D_{13}(2080)$, and $P_{11}(2100)$ at <u>W=2.09</u> GeV. ω photoproduction
- Energy distributions of differential cross sections are mostly flat. No structure.
- ρ^0 photoproduction
- Decrease up to W=2.0 GeV and flat distribution above 2.0 GeV. Similar with π^0 .

Summary

Angular distribution

- Enhancement at backward angles is seen at large energy regions for η , η ' and ω . Not for ρ^0 .
- Is u-channel contribution significant?
- Is it possible to extract the coupling constant?

π^0 photoproduction

- Differential cross sections show a backward peak at W>2.0 GeV due to a u-channel contribution.
- Large slope of dσ/du is not explained by nucleon Regge pole nor scaling rule. Slope changes at W=2.0 GeV.
- Angular dependence of beam asymmetries changes at W = 2.0 GeV. A strong angular dependence is seen and may be due to resonances.

Next step of experiment is to extend to 3 GeV.

LEPS collaboration

D.S. Ahn, J.K. Ahn, H. Akimune, Y. Asano, W.C. Chang, J. Y. Chen, S. Date, H. Ejiri, H. Fujimura, M. Fujiwara, K. Hicks, K. Horie, T. Hotta, K. Imai, T. Ishikawa, T. Iwata, Y.Kato, H. Kawai, Z.Y. Kim, K. Kino, H. Kohri, N. Kumagai, Y.Kon, Y.Maeda, S. Makino, T. Matsumura, N. Matsuoka, T. Mibe, M. Miyabe, Y. Miyachi, M. Morita, N. Muramatsu, T. Nakano, Y. Nakatsugawa, M. Niiyama, M. Nomachi, Y. Ohashi, T. Ooba, H. Ookuma, D. S. Oshuev, J. Parker, C. Rangacharyulu, A. Sakaguchi, T. Sasaki, T. Sawada, P. M. Shagin, Y. Shiino, H. Shimizu, S. Shimizu, Y. Sugaya, M. Sumihama H. Toyokawa, A. Wakai, C.W. Wang, S.C. Wang, K. Yonehara, T. Yorita, M. Yosoi and R.G.T. Zegers a Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan b Department of Physics, Pusan National University, Pusan 609-735, Korea c Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan d Japan Atomic Energy Research Institute, Mikazuki, Hyogo 679-5148, Japan e Institute of Physics, Academia Sinica, Taipei 11529, Taiwan f Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo 679-5198, Japan h School of physics, Seoul National University, Seoul, 151-747 Korea i Department of Physics, Ohio University, Athens, Ohio 45701, USA j Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan k Laboratory of Nuclear Science, Tohoku University, Sendai 982-0826, Japan l Department of Physics, Yamagata University, Yamagata, Yamagata 990-8560, Japan m Department of Physics, Chiba University, Chiba, Chiba 263-8522, Japan n Wakayama Medical College, Wakayama, Wakayama 641-0012, Japan o Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan p Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan q Department of Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada r Department of Applied Physics, Miyazaki University, Miyazaki 889-2192, Japan