¹³Cにおける単極遷移強度と クラスター構造

山田泰一、船木靖郎

Contents

- Monopole strength and cluster structure
 Typical case : ¹⁶O (¹²C)
- Alpha clustering and condensation in ¹³C Monopole strengths in 1/2- states
 Structures of ¹³C: 1/2-, (1/2+)

E0-strength of ¹⁶O: Exp. vs Cal.

Lui et al., PRC64(2001)

FIG. 7. The histogram is the experimental E0 strength converted to monopole response function. The black line shows the monopole response function from Ref. [16] multiplied by 0.25 and shifted by 4.2 MeV.

Exp: Lui et al., PRC 64 (2001) Cal: Ma et al., PRC 55 (1997) Multiplied by 0.25 Shifted by 4.2 MeV

Monopole matrix elements *M(E0)* in ¹⁶0 and ¹²C

Monopole Strengths

		Exp. [fm ²]	Cal. [fm ²]
¹⁶ O	$0^+_1 - 0^+_2$	3.55 ± 0.21	4.1 (3.98*)
	0^{+}_{1} – 0^{+}_{3}	4.03 ± 0.09	2.6 (3.50*)
	0^{+}_{1} – 0^{+}_{5}	3.3 ± 0.7	3.0 (-*)
¹² C	0^{+}_{1} - 0^{+}_{2}	5.4 ± 0.2	6.7

No effective charge!

 ¹⁶O: ¹²C+α OCM*
 Suzuki, PTP56, 111 (1976)

 4α OCM
 Funaki, Yamada et al., PRL 101 (2008)

 ¹²C: 3α RGM
 Kamimura, Nucl. Phys. A 351, 456 (1981)

¹²Be: $0^+_1 - 0^+_2$ (shell-model structure), $\langle r^2 \rangle = 0.83$ fm², S. Shimoura et al., PLB560 (2002)

Exotic characters of 3/2⁻₃ of ¹¹B

T. Kawabata et al., Phys. Lett. B 646, 6 (2007).

	B(GT)	
$\mathbf{E}_{\mathbf{X}}$ (wiev)	Experiment	Shell Model
0.000 (3/2-)	0.345 ± 0.008	0.588
2.125 (1/2-)	0.401 ± 0.032	0.782
4.445 (5/2-)	0.453 ± 0.029	0.616
5.020 (3/2-)	0.487 ± 0.029	0.745
8.104 (3/2-)	< 0.003	_
8.420 (5/2-)	0.398 ± 0.031	0.483

- $3/2_{3}^{-}$ state has exotic characters.
 - Suppressed GT strength
 - Large monopole strength
 - Not predicted by the shell-model calculation
 - 100-keV below the α -decay threshold.

AMD, $2\alpha + t$ OCM: $3/2_{3}$ state has $\alpha + \alpha + t$ cluster structure Yamada, Funaki

Monopole strengths to cluster states: \sim 20% of EWSR Here, we have an interesting question.

Why cluster states are populated from the ground states with mean-field structures by the monopole transitions ?

Doubly closed shell-model w.f. ¹⁶O

¹⁶O g.s. can be excited through cluster degree of freedom, namely, ${}^{12}C+\alpha$ relative motion, from R_{4L} to higher nodal states.

Bayman-Bohr theorem

$$g.s.\rangle = \frac{1}{\sqrt{16!}} \det \left| (0s)^4 (0p)^{12} \right| \times \left[\phi_G(\mathbf{r}_G) \right]^{-1}$$

$$howf \\ = N_{g0} \sqrt{\frac{12!4!}{16!}} A \left\{ \left[\phi_{L=0}(^{12}\text{C})R_{40}(r) \right]_{J=0} \phi(\alpha) \right\}$$

$$= N_{g2} \sqrt{\frac{12!4!}{16!}} A\left\{ \left[\phi_{L=2}(^{12}\text{C}) R_{42}(r) \right]_{J=0} \phi(\alpha) \right\}$$

¹²C(0⁺,2⁺,4⁺) wf.: SU(3)(04) wf α cluster: intrinsic (0s)⁴ $R_{4L}(r,3v_N)$: h.o.w.f. with Q=4 So far, our discussion was qualitatively. Next, we study the monopole strengths in ¹⁶O quantitatively with use of the ¹²C+ α OCM.

 $^{16}\Omega = ^{12}C + \alpha UC$

¹²C ¹²C
$$-\alpha$$

$^{16}O=^{12}C+\alpha$ cluster model

Y. Suzuki, PTP55 (1976), 1751

Even-parity

Odd-parity

Ground state correlation in ¹⁶O (¹²C+ α OCM)

$$M(0_{1}^{+}-0_{k}^{+}) = \left\langle 0_{1}^{+} \right| \frac{1}{2} \sum_{i=1}^{12} (r_{i} - r_{G})^{2} \left| 0_{k}^{+} \right\rangle \propto \Phi^{*}(0_{1}^{+}) \Phi(0_{k}^{+})$$

Product of amplitudes

Deviation from doubly closed shell w.f.

Modified doubly closed shell w.f. V_N : nucleon size parameter

$$\Phi_{0^{+}}(\beta) = N(\beta) \sqrt{\frac{12!4!}{16!}} A\left\{ \left[\phi_{L=0}({}^{12}C)R_{40}(r,\beta) \right]_{0} \phi(\alpha) \right\}^{12} C \left(\beta \right)^{12} C$$

 $\beta/(3\nu_N) = 1$ の時、doubly closed shell w.f: $(0s)^4(0p)^{12}$ $\beta/(3\nu_N) < 1$ α clustering is activated.

Squared overlap on $\beta/3v_N$

Monopole Strengths & G.S. correlation $|0_1^+;N\rangle$: G.S. wf within N quanta model space (N=4,6,...,30) $^{12}C+\alpha OCM$ $|0_2^+\rangle, |0_3^+\rangle$: obtained with full model space (N=30) ¹²C+ α structures $\left|\widetilde{\mathbf{0}_{k}^{+}}\right\rangle = N_{k}\left(1 - \widehat{P}_{N}\right)\left|\mathbf{0}_{k}^{+}\right\rangle, \ \mathbf{k} = \mathbf{2},\mathbf{3} \qquad \qquad \mathbf{4} \mathbf{b} \quad \left\langle\mathbf{0}_{1}^{+}; N\left|\widetilde{\mathbf{0}_{k}^{+}}\right\rangle = \mathbf{0}$ $= N_{k} \left[\left| 0_{k}^{+} \right\rangle - \left| 0_{1}^{+}; N \right\rangle \left\langle 0_{1}^{+}; N \left| 0_{k}^{+} \right\rangle \right| \right]$ $M_{N}(0_{1}^{+}-0_{k}^{+}) = \left\langle 0_{1}^{+}; N \right| \frac{1}{2} \sum_{k=1}^{12} (r_{i} - r_{G})^{2} \left| \widetilde{0_{k}^{+}} \right\rangle \propto \Phi^{*}(0_{1}^{+}; N) \Phi(\widetilde{0_{k}^{+}})$

> Study effect of the ground-state correlation ($^{12}C-\alpha$ clustering in g.s.)

Dep. of $M_N(0^+_1 - 0^+_{2,3})$ on model space of G.S. in ¹⁶O

Summary (I)

Mechanism of M(E0) in light nuclei

(1) Structure of ground state

dual aspects in g.s. : mean-field + cluster

originally having a seed of α clustering (Bayman-Bohr theorem) g.s. correlation

 \rightarrow enhanced α clustering or activating the seed

(2) Monopole operator :

exciting relative motions between clusters by 2hw

(3) Cluster states are populated by E0 (about 20% of EWSR).

Monopole strengths are a good tool to explore cluster states.

Cluster structure and α condensation in ¹³C

T. Yamada and Y. Funaki

Structures of 1/2- states and monopole strengths
 Structures of 1/2+ states

Motivations

- ¹²C, 2nd 0⁺ (Hoyle); 3α condensate
 ¹⁶O, 6th 0⁺; 4α condensate
- Addition of an extra neutron to Hoyle state (3α cond.)
 What happens ?

Which state has the 3α +n gas-like (condensate) structure ?

- : gateway to explore gas-like states composed of bosons and fermions
- 1/2⁻ states excited by monopole transitions in ¹³C(α,α'): What kinds of structures they have ?

Monopole excitations are a good tool to explore cluster structures.

¹³C: monopole strengths

Sasamoto and Kawabata et al. Mod. Phys. Lett. 21 2393 (2006) Reanalayses: Mar. 2008

Monopole excitations in ¹³C Bayman-Bohr theorem: GS of ¹³**C SU(3)(31)**×1/2 13**C** gs $\Phi_{GS}(^{13}\mathrm{C}) = \sqrt{\frac{12!}{13!}} A \left\{ \phi_{0^{+}}(^{12}\mathrm{C}) u_{0 p_{1/2}}(\mathbf{R}) \right\}_{J=1/2^{-}}$ $^{12}C(3\alpha)+n$ $= \sqrt{\frac{12!}{12!}} A \left\{ \phi_{2^{+}}^{(12)}(1^{2}C) u_{0p_{3/2}}^{(12)}(R) \right\}_{I=1/2^{-1}}$ $= \sqrt{\frac{9!4!}{13!}} A \left\{ \phi_{3/2^{-}}({}^{9}\text{Be}) \phi(\alpha) u_{N=4,L=2}(\mathbf{R}) \right\}_{J=1/2^{-}}$ ⁹Be+ α $= \sqrt{\frac{9!4!}{13!}} A \left\{ \phi_{1/2^{-}}({}^{9}\text{Be}) \phi(\alpha) u_{N=4,L=0}(\mathbf{R}) \right\}_{J=1/2^{-}}$ Monopole-excited cluster states **Monopole operator:** *O*(E0:IS) equivalent $O(E\theta)$ Neutron ^{12}C \bigcirc 13**C** n Halo (?) ¹²C(Hoyle)+n gs ⁹Be \bigcirc ⁹Be+ α cluster α

$\frac{13}{C}=3\alpha + n OCM$ with Gaussian basis

¹²C= 3α OCM, ⁹Be= 2α +n OCM

: successful reproduction of ¹²C and ⁹Be

(OCM=Orthogonality Condition Model)

Approximately taken into account:

$$\Psi_{J}(^{13}\mathrm{C}) = \mathcal{A} \begin{pmatrix} \varphi_{\ell_{3}}(\mathbf{r}_{3}, \nu_{3}) & \alpha & n \\ \alpha & \varphi_{\ell_{1}}(\mathbf{r}_{1}, \nu_{1}) \\ \varphi_{\ell_{2}}(\mathbf{r}_{2}, \nu_{2}) & \varphi_{\ell_{1}}(\mathbf{r}_{1}, \nu_{1}) \end{pmatrix}$$

Fully Solving 4-body problem

Gaussian bais: $\varphi_{\ell m}(\mathbf{r}, \nu) = N_{\ell}(\nu)r^{\ell} \exp\left(-\nu r^{2}\right)Y_{\ell m}(\mathbf{r})$

Angular momentum channels:

 $\begin{bmatrix} \left[\left[l_{44}l_{84} \right]_{I} l_{n} \right]_{L}^{\frac{1}{2}} \end{bmatrix}_{J}$ 30 channels K-H coordinates

$$H = T + \sum_{i < j=1}^{3} \left[V_{2\alpha}(r_{ij}) + V_{2\alpha}^{Coul}(r_{ij}) \right] + \sum_{i=1}^{3} V_{\alpha n}(r_{in}) + V_{3\alpha} + V_{2\alpha+n} + V_{Pauli}$$

 $V_{\alpha\alpha}$: reproduction of α - α phase shifts

 $V_{\alpha n}$: reproduction of α -n phase shifts (Kanada-Kaneko pot.)

Overlap amplitudes (reduced width amp.)

 $R_{\rm ms}$ =4.3 fm for Hoyle state

 $R_{\rm ms}$ =4.3 fm for Hoyle state

Summary (2)

- Mechanism of *M*(E0) transition in light nuclei good tool to explore cluster structures
- ¹³C(1/2⁻), structure and M(E0): 3α +n OCM

2nd 1/2- ; ¹²C(0+,2+)+n 3rd 1/2- ; ⁹Be+ α , ¹²C(3-,1-)+n 4-th 1/2- ; ¹²C(Hoyle)+n, ⁹Be+ α , ¹²C(2+)+n Nuclear radii =3.0~3.4 fm : cluster structure

• ${}^{13}C(1/2^+)$

3nd 1/2⁺; strong candidate of dilute α condensation *R*~5 fm, Occu. Prob. ~60%

• Future : 3/2-, other states, *LS*-splitting.